
DataGRID

EDG TUTORIAL

HANDOUTS FOR PARTICIPANTS FOR EDG RELEASE 2.X

Document identifier: DataGrid-08-TUT-V3.2

EDMS id:

Date: November 25, 2003

Work package: EDG Collaboration

Partner(s): EDG Collaboration

Lead Partner: EDG

Document status: Version 3.2

Author(s): Flavia Donno, Leanne Guy, Mario
Reale, Ricardo Rocha, Elisabetta
Ronchieri, Massimo Sgaravatto,
Heinz & Kurt Stockinger, Antony
Wilson

File: edg-tutorial-handout

Abstract: These handouts are provided for people to learn how to use the EDG middleware components
to submit jobs on the Grid, manage data files and get information about their jobs and the testbed. It is
intended for people who have a basic knowledge of the Linux/UNIX operating system and know basic text
editor and shell commands.

IST-2000-25182 PUBLIC 1/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

CONTENTS

1. INTRODUCTION 4

1.1. OVERVIEW . 4

1.2. EXERCISES AND DOCUMENTATION . 4

1.3. GETTING A PROXY - BASICS OF GRID SECURITY 4

1.4. EXAMPLES . 5

1.4.1. GRID-PROXY-INIT . 5

1.4.2. GRID-PROXY-INFO . 5

1.4.3. GRID-PROXY-DESTROY . 5

1.5. GETTING THE EXERCISES . 5

2. JOB SUBMISSION EXERCISES 7

2.1. EXERCISE JS-1: ”HELLO WORLD” . 7

2.2. EXERCISE JS-2: LISTING CONTENT OF CURRENT DIRECTORY ON THE WORKER
NODE - GRID-MAP FILE . 9

2.3. EXERCISE JS-3: A SIMPLE PAW PLOT . 11

2.4. EXERCISE JS-4: PING OF A GIVEN HOST FROM THE WORKER NODE 13

2.5. EXERCISE JS-5: RENDERING OF SATELLITE IMAGES: USING DEMTOOLS . . . 15

2.6. EXERCISE JS-6: USING POVRAY TO GENERATE VISION RAY-TRACER IMAGES 17

2.7. EXERCISE JS-7: GENERATE AN ALICE GEANT3 ALIROOT SIMULATED EVENT 19

2.8. EXERCISE JS-8: CHECKSUM ON A LARGE FILE TRANSFERRED WITH THE
INPUTSANDBOX . 21

2.9. EXERCISE JS-9: A SMALL CASCADE OF ”HELLO WORLD” JOBS 23

2.10. EXERCISE JS-10: A SMALL CASCADE OF ALICE ALIROOT MC EVENTS JOBS . 24

2.11. EXERCISE JS-11: TAKING A LOOK AT THE .BROKERINFO FILE 26

2.12. EXERCISE JS-12: A SIMPLE EXAMPLE OF AN INTERACTIVE JOB 28

2.13. EXERCISE JS-13: EXECUTION OF PARALLEL JOBS 29

2.14. EXERCISE JS-14: JOB CHECKPOINTING EXAMPLE 30

3. DATA MANAGEMENT EXERCISES 36

3.1. EXERCISE DM-1: DISCOVER GRID STORAGE . 37

3.2. EXERCISE DM-2: START USING THE EDG REPLICA MANGER 39

3.3. EXERCISE DM-3: FILE REPLICATION WITH THE EDG REPLICA MANGER . . . 41

3.3.1. ADVANCED EXERCISE - USING A STATIC CONFIGURATION FILE FOR
INFORMATION SERVICE . 42

3.4. EXERCISE DM-4: USING THE REPLICA CATALOG 44

3.5. EXERCISE DM-5: REPLICA OPTIMISATION WITH THE EDG REPLICA MANAGER 46

3.6. EXERCISE DM-6: USING THE REPLICA LOCATION SERVICE 49

3.7. EXERCISE DM-7: USING THE REPLICA METADATA CATALOG 52

3.8. EXERCISE DM-8: USING THE EDG REPLICA MANAGER WITHIN A JOB 54

IST-2000-25182 PUBLIC 2/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

3.9. EXERCISE DM-9: USE CASE - READ DATA ON THE GRID 56

3.9.1. PRE-USE CASE STEPS . 56

3.9.2. USE CASE STEPS . 56

3.10. EXERCISE DM-10: USE CASE - COPY AND REGISTER JOB OUTPUT DATA . . . 57

3.11. EXERCISE DM-11: USE CASE - BULK DATA REGISTRATION 58

4. INFORMATION SERVICE EXERCISES 59

4.1. EXERCISE IS-1: WITH THE AID OF THE COMMAND LINE TOOL DISCOVER
WHAT COMPUTING ELEMENTS ARE AVAILABLE ON THE TESTBED 59

4.2. EXERCISE IS-2: DISCOVER THE AVAILABLE STORAGE ELEMENTS 59

4.3. EXERCISE IS-3: EMULATE THE RESOURCE BROKER 59

4.4. EXERCISE IS-4: FIND OUT WHICH ARE THE RELATED STORAGE ELEMENTS . 59

4.5. EXERCISE IS-5: AVAILABLE SPACE ON THE STORAGE ELEMENT 60

4.6. EXERCISE IS-6: JOINS . 60

4.7. EXERCISE IS-7: R-GMA BROWSER . 60

4.8. EXTRACT FROM THE USERS GUIDE - STREAMPRODUCER 61

5. APPENDIX: ALTERNATIVE INFORMATION SERVICE: MDS 63

6. GLOSSARY 65

6.1. FILE NAMING CONVENTIONS . 65

6.2. ABBREVIATIONS AND EXPLANATIONS . 66

IST-2000-25182 PUBLIC 3/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

Document Change Record

Issue Date Comment Author
1 0 24 June 2003 start writing new DM exercises Kurt Stockinger
1 1 25 June 2003 more exercises added for DM; job

submission partly adaped to EDG
release 2

Heinz & Kurt Stockinger

1 1 1 26 June 2003 more exercises added for DM Heinz & Kurt Stockinger, Leanne
Guy

1 2 7 July 2003 JS examples adapted to release
2.0; exercises 12 and 13 added

Ricardo Rocha

1 3 9 July 2003 IS exercises added Antony Wilson
1 4 15 July 2003 JS exercise 14 added, some mod-

ifications DM exercise 8
Ricardo Rocha

3 2 24 November 2003 small corrections to JS and DM
exercises; source code for JS 14
added

Heinz Stockinger

IST-2000-25182 PUBLIC 4/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

1. INTRODUCTION

1.1. OVERVIEW

This document leads you through a number of increasingly sophisticated exercises covering aspects of
job submission, data management and information systems.

It is assumed that you are familiar with the basic Linux/UNIX user environment (bash, shell etc.) and
that you have obtained a security certificate providing access to the EDG testbed.

This document is designed to be accompanied by a series of presentations providing a general overview
of Grids and the EDG tools.

Solutions to all the exercises are available online.

We do not give exact hostnames of machines in the testbed since they change over time. However, please
refer to the EDG tutorial web-page to get the exact machine names that you require for your tutorial
session.

1.2. EXERCISES AND DOCUMENTATION

In this document, you will find exercises on the following three topics: Job Sumbission, Data Manage-
ment and Information Services. You will use several different Grid tools and you will sometimes need
to consult the documentation of the tools you use. Here you find several hints how to find more detailed
documentation.

• Workload Management Software Administrator and User Guide,
Job Description Language (JDL),
Broker Info API/CLI):

http://server11.infn.it/workload-grid/documents.html

• EDG Replica Manager, Replica Location Service, Replica Metadata Catalog:

http://cern.ch/edg-wp2/replication/documentation.html

• Replica Optimization Service

http://cern.ch/edg-wp2/optimization/documentation.html

1.3. GETTING A PROXY - BASICS OF GRID SECURITY

Once you have a certificate, you can request a ticket to be allowed to do the exercises that are given in
this manual. The ticket you receive will be valid for several hours, long enough for a hands-on afternoon
at least.

First, you have to get onto a machine that understands Grid commands. Such computers are called the
User Interface (UI) machines and you may have one in your own home institute for which you have an
account. If so, you can use this machine. Your instructor will tell you which machine and account you
can use and what your password is.

Now one can get a ticket that allows you to use the testbed. The following commands are available:

• grid-proxy-init to get a ticket, a pass phrase will be required

IST-2000-25182 PUBLIC 5/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

• grid-proxy-info -all gives information of the ticket in use

• grid-proxy-destroy destroys the ticket for this session

• grid-proxy-xxx -help shows the usage of the command grid-proxy-xxx

1.4. EXAMPLES

1.4.1. GRID-PROXY-INIT

[bosk@testbed010 bosk] grid-proxy-init
Your identity: /O=dutchgrid/O=users/O=nikhef/CN=Kors Bos
Enter GRID pass phrase for this identity:
Creating proxy .. Done
Your proxy is valid until Thu Sep 5 21:37:39 2002

1.4.2. GRID-PROXY-INFO

[bosk@testbed010 bosk] grid-proxy-info -all
subject : /O=dutchgrid/O=users/O=nikhef/CN=Kors Bos/CN=proxy
issuer : /O=dutchgrid/O=users/O=nikhef/CN=Kors Bos
type : full
strength : 512 bits
<timeleft : 11:59:43

1.4.3. GRID-PROXY-DESTROY

[bosk@testbed010 bosk] grid-proxy-destroy -dryrun

Would remove the file /tmp/x509up uUID where your proxy is stored. Note that the proxy file /tmp/x509up uUID
depends on your UNIX User ID (UID) and thus if your UID is 2899, the proxy file is called: /tmp/x509up u2899.

1.5. GETTING THE EXERCISES

Now you are logged onto the testbed and have a ticket, you can start to run some. Some material for the
exercises has been prepared in advance and you can copy it (e.g. with wget) to your home directory on
the UI machine from:

http://cern.ch/hep-proj-grid-tutorials/jobsubmission-2.tar.gz

Example of what you may see on the screen:

[bosk@testbed010 temp] wget http://cern.ch/hep-proj-grid-tutorials/jobsubmission-2.tar.gz
http://cern.ch:80/hep-proj-grid-tutorials/jobsubmission-2.tar-gz

=> ‘jobsubmission.tgz’

Connecting to hep-proj-grid-tutorials.web.cern.ch:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 2,031,924 [application/x-compressed]
0K -> [2%]

IST-2000-25182 PUBLIC 6/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

50K -> [5%]
1900K ->[98%]
1950K ->[100%]
11:31:45 (9.55 MB/s) - ‘jobsubmission.tgz’ saved [2031924/2031924]

IST-2000-25182 PUBLIC 7/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

2. JOB SUBMISSION EXERCISES

2.1. EXERCISE JS-1: ”HELLO WORLD”

Goal: In this example we do the simplest job submission to the Grid. We will involve the basic compo-
nents of the Workload Management System (WMS). Namely, we will submit a job which simply
prints ”Hello World”, using the /bin/echo command and takes the ”Hello World” string as an argu-
ment to this command.

A simplified version of the Workload Management System (WMS) and involved components is shown
in Figure 1. The following main components are involved:

• User Interface (UI)

• Workload Management System (WMS) components (including. a Network Server, Resource Bro-
ker, Job Controller etc. 1).

• Computing Element (CE) with the Globus Gatekeeper (GK) and the Local Resource Management
System (LRMS),

• Worker Node (WN)

• Logging and Bookkeeping (LB) system

1

6

7

2 5

3

4

UI

WN
CE

LRMS

Gatekeeper (GK)

WMS

Figure 1: The main WMS components and their operation

Users access the Grid through the User Interface machine, which by means of a set of binary executables
written in Python, allows us to submit a job, monitor its status and retrieve its output. The job will
execute on the Worker Node but the output can be displayed and stored on the UI machine.

To do so, we write a simple JDL (Job Description Language) file and issue a the command

edg-job-list-match <JDL-file-name>

to check which are the available computing elements to execute the job. We submit it to the Grid by
means of the following command:

1For architectural details please refer to the User Guide or to the slides in the Job Submission talk of the EDG Tutorial

IST-2000-25182 PUBLIC 8/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

edg-job-submit <JDL-file-name>

The system should accept our job and return a unique job identifier (JobId).

We verify the status of the execution of the job using

edg-job-status <JobId>

After the jobs gets into the Done (Success) status, we retrieve the output by issuing

edg-job-get-output <JobId>

Next, we verify that the output file is in the corresponding local temporary directory on the user interface
and that no errors occurred.

Figure 1 shows the complete sequence of operations performed, after having compiled the JDL file and
having verified the availability of matching computing elements. The numbers below correspond to the
numbers in Figure 1:

• User submits the job from the UI to the WMS. (1)

• The WMS (in particular the Resource Broker) performs the matchmaking to find the best available
CE to execute the job.

• The WMS first prepares the job which includes the creation of a RSL (Resource Specification
Language) file to submit to the Local Resource Management System (LRMS or batch system such
as LSF, PBS, etc). The WMS then transfers the job (and files specified in the InputSandbox) to the
Globus Gatekeeper (GK). (2)

• The Gatekeeper sends the Job to the LRMS, which handles the job execution on the available local
farm worker nodes. (3)

• After the execution on the WN, the produced output is transferred back to the WMS and to the UI,
using the OutputSandbox. (4), (5), (6)

• Queries of the job status are addressed to the logging and bookkeeping database (part of the WMS)
from the UI machine. (7)

The JDL file, we will be using, is the following one:

Executable = "/bin/echo";
Arguments = "Hello World";
StdOutput = "message.txt";
StdError = "stderror";
OutputSandbox = {"message.txt", "stderror"};

The issued command sequence will be:

grid-proxy-init
edg-job-submit HellowWorld.jdl
edg-job-status JobId
edg-job-get-output JobId

IST-2000-25182 PUBLIC 9/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

2.2. EXERCISE JS-2: LISTING CONTENT OF CURRENT DIRECTORY ON THE WORKER NODE -
GRID-MAP FILE

Goal: In this example we will list the files on the local directory of the Worker Node.

Every user is mapped onto a local user account on the various Computing Elements all over the Grid.
This mapping is controlled by the /etc/grid-security/grid-mapfile file on the Gatekeeper machine and is
known as the grid-mapfile mechanism: every user (identified by their personal certificate’s subject) must
be listed in the grid-mapfile file and associated to one of the pooled accounts available on the CE for the
locally supported Virtual Organization he belongs to (see Figure 2).

User: Pablo Martinex VO: atlas

pablo:x:5001:1235:Martinez:/home/pablo:/bin/sh

grid−mapfile on the CE (GateKeeper) gridmapdir

...............

User: atlas039 VO: atlas

atlas039:x:1089:2002:mapped user for atlas:/home/atlas039:/bin/bash

"/C=ES/O=IFPES/OU=DBA/CN=IanGonzalez/Email=ian@ifpes.es" .cms

"/C=ES/O=IEF/OU=ASP/CN=Paolo Martinez/Email=marti@ief.es" .atlas

"/C=FR/O=IFF/OU=CAL/CN=François Dupont/Email=fd@iff.fr" .alice

Figure 2: The grid-mapfile mechanism

The grid-mapfile mechanism, which is part of GSI, requires that each individual user on the Grid is
assigned to a unique local User ID. The accounts leasing mechanism allows access to take place without
the need for the system manager to create an individual user account for each potential user on each
computing element.

On their first access to a Testbed site, users are given a temporary ”leased” identity (similar to temporary
network addresses given to PCs by the DHCP mechanism). This identity is valid for the task duration
and need not to be freed afterwards. If the lease still exists when the user reenters the site, the same
account will be reassigned to him.

(See http://www.gridpp.ac.uk/gridmapdir/)

We therefore submit here (after grid-proxy-init) a job using the executable /bin/ls, and we redirect
the standard output to a file (JDL attribute: Stdoutput = ”ListOfFiles.txt”;), which is retrieved via the
OutputSandbox to a local directory on the User Interface machine. The result of the file listing command
will be the list of files on the $HOME directory of the local user account on the Worker Node to which
we are mapped. We can issue edg-job-submit JobId and edg-job-get-output JobId (after the job
is in the Done (Success) status) to get the output.

The exercise is finished at this point.

IST-2000-25182 PUBLIC 10/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

BACKGROUND INFORMATION ON SECURITY

You are not asked to print the grid-mapfile. It is mentioned here for your information and knowledge.

This very basic example shows how accessing Grid resources is guaranteed only to certified users, with
a valid PKI X.509 personal certificate (issued by an officially recognized Certification Authority), whose
certificate’s subject is listed in the grid-mapfile of the various CE resources, distributed all over the Grid.

To store all subjects of the certificates belonging to the large community of users, each virtual Organi-
zation manages an LDAP Directory server, describing its members. Each user entry of this directory
contains at least the URL of the certificate on the Certification Authority LDAP Server and the Subject
of the user’s certificate, in order to make the whole process faster.

Moreover, EDG must sign the Acceptable Use Policy (AUP) document in order to receive a certificate
and there is another LDAP Directory (”Authorization Directory”) which collects the names of people
who have signed the AUP. The grid-mapile file on the various Grid CEs is generated by a daemon
called mkgridmap, which contacts these LDAP servers (the VO-Authentication server, which will at its
turn contact the Certification Authority LDAP server) and the Authorization Directory server, to locally
generate (normally once per day) a locally updated version of the /etc/grid-security/grid-mapfile file.
This mechanism is represented in Figure 3.

Figure 3: The mkgridmap daemon, updating the grid-mapfile file

IST-2000-25182 PUBLIC 11/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

2.3. EXERCISE JS-3: A SIMPLE PAW PLOT

Goal: In this exercise we execute a simple plot on the Grid using PAW, the Physics Analysis Workstation
package belonging to the CERNLIB libraries.

The PAW executable is installed under the /cern/pro/bin directory. We will run PAW in its batch mode,
passing as an argument to the executable the ”-b testgrid” string, which tells PAW to execute in batch a
macro of instructions called testgrid.kumac.

testgrid.kumac opens a file for output in the postscript format and stores the drawing of the components
of a previously created simple vector:

ve/create a(10) r 1 2 3 8 3 4 5 2 10 2
ve/print a
for/file 1 testgrid.ps
metafile -1 -111
ve/draw a
close 1

Another macro file called pawlogon.kumac sets the PAW environment and options for a given user: in
this case the date on the plots.

The produced output file is therefore testgrid.ps, which, after the Job Output retrieval, can be viewed
using ghostview.

Figure 4: The main Grid components involved in the execution of a simple PAW plot

The two required .kumac files are stored locally on our UI machine and need to be transferred to the
Worker Node via InputSandbox. When the Job has finished, we can retrieve the produced output file,
together with the standard error and standard output file via the OutputSandbox.

Therefore the JDL file (pawplot.jdl) we are going to use looks like this:

IST-2000-25182 PUBLIC 12/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

Executable = "/cern/pro/bin/paw";
Arguments = "-b testgrid";
StdOutput = "stdoutput";
StdError = "stderror";
InputSandbox = {"testgrid.kumac", "pawlogon.kumac"};
OutputSandbox = {"stderror", "stdoutput", "testgrid.ps"};

We will submit this job twice: once to the Broker, leaving it the task of performing the matchmaking
process to find the best matching CE, and once directly to an available CE (we get the list of available
CEs using the edg-job-list-match command).

The sequence of commands we are going to issue is:

grid-proxy-init
edg-job-submit pawplot.jdl
edg-job-status JobId1
edg-job-get-output JobId1
edg-job-list-match pawplot.jdl
edg-job-submit -resource CEid pawplot.jdl
edg-job-status JobId2
edg-job-get-output JobId2

Figure 4 shows the main Grid elements involved in this job’s execution example.

IST-2000-25182 PUBLIC 13/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

2.4. EXERCISE JS-4: PING OF A GIVEN HOST FROM THE WORKER NODE

Goal: In this example we run the simple ping of a remote host from the Worker Node, to start understand
the execution of simple commands on the worker nodes. We will execute a ping to a given host
from the Worker Node in two ways: directly calling the /bin/ping executable on the machine and
writing a very simple shell script (pinger.sh) which does it for us, just to understand how to use
shell scripts on the Grid.

We need therefore to write two different JDL files and submit them.

In the first case we directly call the ping executable (JDL file is pinger1.jdl):

Executable = "/bin/ping";
Arguments = "-c 5 lxshare0220.cern.ch";
RetryCount = 7;
StdOutput = "pingmessage1.txt";
StdError = "stderror";
OutputSandbox = {"pingmessage1.txt","stderror"};
Requirements = other.GlueHostOperatingSystemName == "Redhat";

Whereas in the second case we call the bash executable to run a shell script, giving as input argument
both the name of the shell script and the name of the host to be pinged (as required by the shell script
itself) (JDL file is pinger2.jdl):

Executable = "/bin/bash";
Arguments = "pinger.sh lxshare0220.cern.ch";
RetryCount = 7;
StdOutput = "pingmessage2.txt";
StdError = "stderror";
InputSandbox = "pinger.sh";
OutputSandbox = {"pingmessage2.txt", "stderror"};
Requirements = other.GlueHostOperatingSystemName == "Redhat";

where the pinger.sh shell script, to be executed in bash, is the following one:

#!/bin/bash
/bin/ping -c 5 $1

As a related problem, try to build similar examples for /bin/pwd or /usr/bin/who, in both ways: directly
and via a shell script. As usual, the set of commands we are going to issue in both cases is the following
one (of course changing the name of the JDL from pinger1.jdl to pinger2.jdl in the second case):

grid-proxy-init
edg-job-submit pinger1.jdl
edg-job-status JobId
edg-job-get-output JobId

The main difference between the two ways of operating are summarized below, and it suggests a third
one:

JDL file - 1

IST-2000-25182 PUBLIC 14/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

Executable = "/bin/ping";
Arguments = "-c 5 lxshare0393.cern.ch";

JDL file - 2

Executable = "/bin/bash";
Arguments = "pinger.sh lxshare0393.cern.ch";
InputSandbox = "pinger.sh";

JDL file - 3 There is a third way of executing the ping command: directly calling the pinger shell script
as executable.

Executable = "pinger.sh";
Arguments = "lxshare0393.cern.ch";
InputSandbox = "pinger.sh";

IST-2000-25182 PUBLIC 15/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

2.5. EXERCISE JS-5: RENDERING OF SATELLITE IMAGES: USING DEMTOOLS

Please note that this exercise can only be executed if the DEMTOOLs
software is installed on at least one available Computing Element.
Since this software is not strictly related to the on going production
activities, it may unfortunately happen that it occasionally will not
be available.

Therefore, please check, before trying to start the exercise, that
at least one CE fits the requirements of the exercise, and issue a
edg-job-list-match demtools.jdl to make sure it can be executed,
otherwise please skip this exercise.

In addition, after execution, a visualization tool called ‘‘lookat’’
is required to visualize the produced graphical file in output. If
this tool is not installed on the UI machine you are using (usually under
/usr/local/bin/lookat) you will not be able to look at the produced
output file. Cross-check this with the available tutors during the tutorials.

We will launch the DEMTOOLs program on the Grid, which is a satellite images rendering program:
starting from ASCII files in the .DEM format (Digital Elevation Model, usually acquired by high reso-
lution remote sensing satellites), produces graphical virtual reality images, in the .wrl file format, which
can then be browsed and rotated using the lookat command, after output retrieval.

We need to specify in input the satellite remote sensing data stored in the 2 files, referring to satellite
views of Mont Saint Helens and the Grand Canyon, called mount sainte helens WA.dem and grand canyon AZ.dem,
and after the job’s execution we need to specify the name of the 2 produced images we want returned to
our UI machine. The data flow is shown in Figure 5.

UI

WN

InputSandbox

OutputSandbox

mount_sainte_helens_WA.dem,
grand_canyon_AZ.dem

mount_sainte_helens_WA.wrl,

grand_canyon_AZ.wrl

OUTPUT

INPUT

DEMTOOLs

UI

Figure 5: Data Flow for example exercise JS-5 on DEMTOOLs

The JDL file (demtools.jdl) is the following one:

Executable = "/bin/sh";

IST-2000-25182 PUBLIC 16/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

StdOutput = "demtools.out";
StdError = "demtools.err";
InputSandbox = {"start_demtools.sh",

"mount_sainte_helens_WA.dem",
"grand_canyon_AZ.dem"};

OutputSandbox = {"demtools.out",
"demtools.err",
"mount_sainte_helens_WA.ppm",
"mount_sainte_helens_WA.wrl",
"grand_canyon_AZ.ppm",
"grand_canyon_AZ.wrl"};

RetryCount = 7;
Arguments = "start_demtools.sh";
Requirements = Member("DEMTOOLS",other.GlueHostApplicationSoftwareRunTimeEnvironment);

Note that we need to expressly require that the destination CE should have the DEMTOOLs software
installed: we do so in the last line of the JDL file.

The launching shell script (start demtools.sh) used is the following one:

/usr/local/bin/dem2ppm mount_sainte_helens_WA.dem \
mount_sainte_helens_WA.ppm

/usr/local/bin/dem2vrml -r 2 mount_sainte_helens_WA.dem \
mount_sainte_helens_WA.wrl}

/usr/local/bin/dem2ppm grand_canyon_AZ.dem \
grand_canyon_AZ.ppm}

/usr/local/bin/dem2vrml -r 2 grand_canyon_AZ.dem \
grand_canyon_AZ.wrl

To check the effective presence of available CEs for the job to be correctly executed, as usual, we can
issue a edg-job-list-match demtools.jdl. After we checked (issuing a edg-job-status JobId)
that the Job reached the OutputReady status, we can issue a edg-job-get-output JobId to retrieve
the output locally on the User Interface machine and take a look at the produced images going in the
local directory where the output has been returned using lookat grand canyon AZ.wrl and lookat
mount sainte helens WA.wrl.

Finally, to visualize the produced graphical output file, we can issue:

lookat grand_canyon_AZ.wrl

IST-2000-25182 PUBLIC 17/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

2.6. EXERCISE JS-6: USING POVRAY TO GENERATE VISION RAY-TRACER IMAGES

Please note that this exercise can only be done if the POVRAY software
is installed on at least one available Computing Element. Before you
start the exercise, therefore please make sure that the software is
actually available (using the command dg-job-list-match povray_pipe.jdl)

We want to launch POVRAY (http://povray.org), a graphical program, which starting from ASCII
files (in this specific example - the pipeset.pov file) in input, creates in output Vision Ray-Tracer images
in the .png file format.

We will do it using the Grid, submitting a proper JDL file which executes an ad-hoc shell script file. In
this example the outcoming image is the one of a pipe duct.

We need therefore to compile our JDL file, specifying in the InputSandbox all the required ASCII files
to be used by the program and the corresponding shell script. Then we submit it to the WMS system.

The executable to be used in this case is the sh shell executable, giving as an input argument to it the
name of the shell script we want to be executed(start povray pipe.sh):

#!/bin/bash
mv pipeset.pov OBJECT.POV
/usr/local/bin/x-povray /usr/local/lib/povray31/res640.ini
mv OBJECT.png pipeset.png

We can finally, after having retrieved the Job, examine the produced image using Netscape or Explorer
or using xv (after having exported the $DISPLAY variable to our current terminal).

The JDL file we are going to use is the following one (povray pipe.jdl):

Executable = "/bin/sh";
StdOutput = "povray_pipe.out";
StdError = "povray_pipe.err";
InputSandbox = {"start_povray_pipe.sh", "pipeset.pov"};
OutputSandbox = {"povray_pipe.out",

"povray_pipe.err",
"pipeset.png"};

RetryCount = 7;
Arguments = "start_povray_pipe.sh";
Requirements = Member("POVRAY-3.1",other.GlueHostApplicationSoftwareRunTimeEnvironment);

Since we require a special software executable (/usr/local/bin/x-povray/usr/local/lib/povray3/res640.ini),
which is identified by the Grid Run Time Environment lag called “POVRAY-3.1”, we notice here that we
need to specify it in the Requirements classAd, in order to consider (during the matchmaking done by
the Broker to select the optional CE to send the job to) only those CEs which have this software installed.
This is done in the last line of the JDL file.

The set of sequence commands we are going to issue is the following one:

grid-proxy-init
edg-job-list-match povray_pipe.jdl
edg-job-submit povray_pipe.jdl
edg-job-status JobId
edg-job-get-output JobId

IST-2000-25182 PUBLIC 18/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

UI

WN

UI

InputSandbox

OutputSandbox

POVRAY

OUTPUT

INPUT
start_povray_pipe.sh,
pipeset.pov

povray_pipe.out,

povray_pipe.err, pipeset.png

Figure 6: Data Flow for example exercise JS-6 on POVRAY

The data flow via Input and Output Sandboxes for this exercise is shown in Figure 6. To take a look at
the produced file look at pipeset.png using xview : issue xv pipeset.png or xview pipeset.png .

IST-2000-25182 PUBLIC 19/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

2.7. EXERCISE JS-7: GENERATE AN ALICE GEANT3 ALIROOT SIMULATED EVENT

Goal: We are going to generate an ALICE (http://alice.web.cern.ch/Alice) simulated event on
the Grid.

The event is a reduced track number Lead-Lead collision, and it is generated by Aliroot (2), which is a
GEANT 3 based generator for MonteCarlo simulated events.

We write therefore a JDL file using the /bin/bash executable passing as argument the name of the script
we want to execute. This script basically sets some environmental variables and then launches Aliroot
with an appropriate configuration file. We will need to transfer all required files to the WN, therefore
filling them in the InputSandbox. We will then retrieve the output and check the correct presence of the
files in output, and take a look at the produced event running Aliroot in the Display mode. The required
shell script to be used sets some relevant environment variables and renames one file (rootrc) for Aliroot;
then it starts the Aliroot programs, “compiling on the flight” the file grun.C and initially generating the
event, in the galice.root file.

#!/bin/sh
mv rootrc $HOME/.rootrc
echo "ALICE_ROOT_DIR is set to $ALICE_ROOT_DIR"
export ROOTSYS=$ALICE_ROOT_DIR/root/$1
export PATH=$PATH:$ROOTSYS/bin
export LD_LIBRARY_PATH=
$ROOTSYS/lib:$LD_LIBRARY_PATH

export ALICE=$ALICE_ROOT_DIR/aliroot
export ALICE_LEVEL=$2
export ALICE_ROOT=$ALICE$ALICE_LEVEL
export ALICE_TARGET=‘uname‘
export LD_LIBRARY_PATH=
$ALICE_ROOT/lib/tgt_$ALICE_TARGET:$LD_LIBRARY_PATH

export PATH=
$PATH:$ALICE_ROOT/bin/tgt_$ALICE_TARGET:$ALICE_ROOT/share

export MANPATH=$MANPATH:$ALICE_ROOT/man
$ALICE_ROOT/bin/tgt_$ALICE_TARGET/aliroot -q -b grun.C

The JDL file we need is the following one:

Executable = "/bin/sh";
StdOutput = "aliroot.out";
StdError = "aliroot.err";
InputSandbox = {"start_aliroot.sh",

"rootrc",
"grun.C",
"Config.C"};

OutputSandbox = {"aliroot.out",
"aliroot.err",
"galice.root"};

RetryCount = 7;
Arguments = "start_aliroot.sh 3.02.04 3.07.01";
Requirements = Member("ALICE-3.07.01",other.GlueHostApplicationSoftwareRunTimeEnvironment);

2http://alisoft.cern.ch/offline/aliroot-new/howtorun.html

IST-2000-25182 PUBLIC 20/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

Figure 7: The ALICE Aliroot GEANT 3 simulated event

Note that the following part of the exercise (displaying the event) can only be
executed if aliroot is installed locally on your User Interface
machine (UI). Please check that or ask your tutor for help.

After output retrieval, we can take a look at the event launching Aliroot in the Display mode by issuing
aliroot display.C, after having copied the rootrc file to our home directory, having renamed it to .rootrc
and having sourced the aliroot.sh file. The generated event looks like the one reported in Figure 7.

Figure 8 reports the data flow (Input/Output) for this aliroot example run.

IST-2000-25182 PUBLIC 21/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

UI

WN

UI

InputSandbox

OutputSandbox

aliroot.err, aliroot.out,

start_aliroot.sh, rootrc,
grun.C, Config.C

galice.root

INPUT

OUTPUT

Aliroot

Figure 8: Input/Output data flow to the Worker Node for the generation of an ALICE simulated
event

2.8. EXERCISE JS-8: CHECKSUM ON A LARGE FILE TRANSFERRED WITH THE INPUTSAND-
BOX

Goal: In this example exercise we transfer via InputSandbox a large file (file size about 200 MB), whose
bit wise checksum is known, and check that the file transfer did not corrupt by any mean the file
by performing again the checksum on the Worker Node and comparing the two results.

We will use a shell script (ChecksumShort.sh), which exports in an environmental variable ($CSTRUE) the
value of the CheckSum for the file before file transfer, and then performs again the check locally on the
Worker Node issuing the cksum command on the file short.dat and exporting the result in the $CSTRUE
environmental variable. The test result is correct if the two values are equal:

#!/bin/sh
The true value of the checksum
export CSTRUE="2933094182 1048576 short.dat"
Create a 20MB file with the given seed
echo "True checksum:’${CSTRUE}’"
export CSTEST="‘cksum short.dat‘"
echo "Test checksum:’${CSTEST}’"
echo "Done checking"
if ["${CSTRUE}" = "${CSTEST}"]; then
export STATUS=OK;

else
export STATUS=FAIL;

fi
Finished
echo "Goodbye. [${STATUS}]"

The JDL file we are going to use is the following one (ChecksumShort.jdl):

IST-2000-25182 PUBLIC 22/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

Executable = "ChecksumShort.sh";
StdOutput = "std.out";
StdError = "std.err";
InputSandbox = {"ChecksumShort.sh", "short.dat"};
OutputSandbox = {"std.out", "std.err"};
Arguments = "none";

If everything works fine (and the GridFTP InputSandbox transfer was OK) in the std.out file we should
find this content:

True checksum:’2933094182 1048576 short.dat’
Test checksum:’2933094182 1048576 short.dat’
Done checking.
Goodbye. [OK]

The data flow for this exercise is shown in Figure 9.

UI

WN

UI

InputSandbox

OutputSandbox

short.dat (~20 MB)
ChecksumShort.sh

INPUT

cksum

OUTPUT
std.out

std.err

Figure 9: Checksum example data flow

As usual, the sequence of commands we are going to issue is the following one:

grid-proxy-init
edg-job-submit ChecksumShort.jdl
edg-job-status JobId
edg-job-get-output JobId

We finally need to change directory to the local directory where files have been retrieved and examine
the std.out to check the result of the checksum test.

IST-2000-25182 PUBLIC 23/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

2.9. EXERCISE JS-9: A SMALL CASCADE OF ”HELLO WORLD” JOBS

Goal: Goal of this exercise is to submit a small cascade of elementary ”Hello World” jobs, to explore
the tools provided to handle numerous JobIds during the parallel execution of a large set of Jobs.

For our purpose we can log in twice on the User Interface, in order to have at our disposal two simulta-
neous sessions from which to submit jobs.

We then use a shell script that loops a given amount of times submitting a single job each occasion
(submitter.sh):

#!/bin/bash
i=0
while [$i -lt $1]
do edg-job-submit -o $2 HelloWorld.jobids
i=‘expr $i +1‘

done

From each UI session, after grid-proxy-init, we can issue the command:

./submitter.sh 4 HelloWorld.jobids}.

The ”.jobids” file is a file containing all JobIds for the 4 submitted Jobs. This can be done using the ”-o
filename option in the edg-job-submit command to submit jobs.

We can then use the provided shell script called analysis.sh (which requires in input the name of the
.jobids file) to issue the edg-job-status for all jobs and extract in a formatted way some relevant
information, storing it in the file analizza.txt. Otherwise we can also issue directly a edg-job-status
-i HelloWorld.jobids to get info on the Job’s status. To collectively retrieve the output we can issue
a edg-job-get-output -i HelloWorld.jobids and then examine the content of the files on the local
temporary directories on the UI, where files are retrieved. The JDL file we use is the simplest one of all:

Executable = "/bin/echo";
StdOutput = "message.txt";
StdError = "stderror";
OutputSandbox = {"message.txt", "stderror"};
Arguments = "Hello World";

IST-2000-25182 PUBLIC 24/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

2.10. EXERCISE JS-10: A SMALL CASCADE OF ALICE ALIROOT MC EVENTS JOBS

Goal: The aim of this exercise is to submit a small cascade of Aliroot jobs to represent a mini production
of ALICE simulated events on the Grid.

We will therefore use a submitter shell script, which will produce a loop in which the submission of the
aliroot.jdl (see exercise JS-7) is performed.

Like in the previous exercise (JS-9), we will store all JobIds in a file (aliroot.jobids), and use this file to
handle the jobs (getting their status and retrieving the output).

We run the alirootSubmitter.sh shell script, that will issue the edg-job-submit -o aliroot.jobids
commands. We then monitor the status of the jobs using the analysis.sh script. After all jobs have been
executed, we will issue a edg-job-get-output -i aliroot.jobids to retrieve the output of all the
executed jobs. We require the presence of the ALICE Experiment Software installed on the Computing
Element’s Worker Nodes: this is done in the last line of the following JDL file (aliroot.jdl):

Executable = "/bin/sh";
StdOutput = "aliroot.out";
StdError = "aliroot.err";
InputSandbox = {"start_aliroot.sh",

"rootrc",
"grun.C",
"Config.C"};

OutputSandbox = {"aliroot.out",
"aliroot.err",
"galice.root"};

RetryCount = 7;
Arguments = "start_aliroot.sh 3.02.04 3.07.01";
Requirements = Member("ALICE-3.07.01",other.GlueHostApplicationSoftwareRunTimeEnvironment);

The corresponding shell script (start aliroot.sh) is (like in exercise JS-7):

#!/bin/sh
mv rootrc $HOME/.rootrc
echo "ALICE_ROOT_DIR is set to $ALICE_ROOT_DIR"
export ROOTSYS=$ALICE_ROOT_DIR/root/$1
export PATH=$PATH:$ROOTSYS/bin
export LD_LIBRARY_PATH=
$ROOTSYS/lib:$LD_LIBRARY_PATH

export ALICE=$ALICE_ROOT_DIR/aliroot
export ALICE_LEVEL=$2
export ALICE_ROOT=$ALICE/$ALICE_LEVEL
export ALICE_TARGET=‘uname‘
export LD_LIBRARY_PATH=
$ALICE_ROOT/lib/tgt_$ALICE_TARGET:$LD_LIBRARY_PATH

export PATH=
$PATH:$ALICE_ROOT/bin/tgt_$ALICE_TARGET:$ALICE_ROOT/share

export MANPATH=$MANPATH:$ALICE_ROOT/man
$ALICE_ROOT/bin/tgt_$ALICE_TARGET/aliroot -q -b grun.C

and the alirootSubmitter.sh shell script is the following one:

IST-2000-25182 PUBLIC 25/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

#!/bin/bash
i=0
while [$i -lt $1]
do edg-job-submit -o $2 aliroot.jdl
i=‘expr $i +1‘

done

Finally, we need to issue from the User Interface machine the following commands to start the produc-
tion:

grid-proxy-init
./alirootSubmitter.sh 5 aliroot.jobids
./analysis.sh aliroot.jobids
edg-job-get-output -i aliroot.jobids

IST-2000-25182 PUBLIC 26/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

2.11. EXERCISE JS-11: TAKING A LOOK AT THE .BROKERINFO FILE

Goal: In this exercise we learn how to use the .BrokerInfo file and corresponding tools to retrieve infor-
mation about a job on a Worker Node.

When a Job is submitted to the Grid, we do not know a-priori its destination Computing Element.

There are reciprocal ”closeness” relationships among Computing Elements and Storage Elements which
are taken into account during the match making phase by the Resource Broker and affect the choice of
the destination CE according to where required input data are stored.

For jobs which require accessing input data normally resident on a given Grid SE, the first part of the
matchmaking is a query to the Replica Catalog to resolve each required LFN into a set of corresponding
SURLs or physical locations. Once a set of job-accessible SEs is available, the matchmaking process
selects the optimal destination CE - i.e. the ”closest” to the most accessed Storage Element.

In general, we need a way to inform the Job of the choice made by the Resource Broker during the
matchmaking so that the Job itself knows which are the physical files actually to be opened. Therefore,
according to the actual location of the chosen CE, there must be a way to inform the job how to access
the data.

This is achieved using a file called the .BrokerInfo file, which is written at the end of the matchmaking
process by the Resource Broker and it is sent to the worker node as part of the InputSandbox.

The .BrokerInfo file contains all information relevant for the Job, like the destination CEId, the required
data access protocol for each of the SEs needed to access the input data (”file” - if the file can be opened
locally, ”rfio” or ”gridftp” - if it has to be accessed remotely, etc), the corresponding port numbers to be
used and the physical file names (SURLs) corresponding to the accessible input files from the CE where
the job is running.

The .BrokerInfo file provides to the application a set of methods to resolve the LFN into a set of possible
corresponding SURLs (getLFN2SFN). Note that by definition the SFN corresponds to an SURL but
it does not contain the prefix “srm:”. Neither the BrokerInfo API nor CLI distinguishes between
SFN and SURL and thus they are identical here..

In addition, there exists a Command Line Interface (CLI) called edg-brokerinfo that is equivalent to
the C++ API. It can be used to get information on how to access data, compliant with the chosen CE.
The CLI methods can be invoked directly on the Worker Node (where the .BrokerInfo file actually is
held), and - similarly to the C++ API - do not actually re-perform the matchmaking, but just read the
.BrokerInfo file to get the result of the matchmaking process. Note that the CLI and the API can only
be successfully used on the WN where the .BrokerInfo file exists. You will not be able to use the
tool on the UI.

In this example exercise we take a look at the .BrokerInfo file on the Worker Node of the destination CE,
and examine its various fields.

The vary basic JDL we are going to use is the following one (brokerinfo.jdl):

Executable = "/bin/more";
StdOutput = "message.txt";
StdError = "stderror.log";
OutputSandbox = {"message.txt", "stderror.log"};
Arguments = " .BrokerInfo";

The corresponding set of commands we have to issue are as follows:

IST-2000-25182 PUBLIC 27/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

grid-proxy-init
edg-job-submit brokerinfo.jdl
edg-job-get-output JobId

IST-2000-25182 PUBLIC 28/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

2.12. EXERCISE JS-12: A SIMPLE EXAMPLE OF AN INTERACTIVE JOB

Goal: This exercise will show you how to submit jobs to the grid which require input from the user.

We can specify an interactive job by setting JobType on the JDL to “Interactive”. By doing this, our job
submission will involve some additional steps: A shadow process will be launched in the background
of the console. This process will listen for job standard streams on some port chosen by the OS. A new
window is opened where the job streams are forwarded. As this is a X window, we have to make sure
that we either connect to the UI via ssh -X or manually set the DISPLAY environment variable to the
correct value.

The JDL we will use for this example is the following (interactive.jdl):

[
JobType = "Interactive" ;
Executable = "scriptint.sh" ;
InputSandbox = {"scriptint.sh"} ;
OutputSandbox = {"err" , "out" } ;
StdOutput = "out";
StdError = "err";
]

As the job starts running, a new window will show on the screen with three main areas: Standard Output,
Error and Input. In this example we will see the result of scriptint.sh on Standard Output. We should
provide the necessary input by writing on the window and after the job ends simply close it.

The script executed on the WN is the following one:

#!/bin/sh
echo "Welcome !"
sleep 1;
echo "What’s your name ?"
read A
echo ‘‘Bye Bye \$A’’
exit 0

The command sequence for this example is this one: grid-proxy-init
edg-job-submit interactive.jdl
edg-job-status JobId

As StdOut and StdError are being redirected to the X window, there are no files coming from these. If we
had some additional data being generated on the WN, we could get it as usually using edg-job-get-output.

IST-2000-25182 PUBLIC 29/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

2.13. EXERCISE JS-13: EXECUTION OF PARALLEL JOBS

Goal: The goal of this exercise is to give an example of parallel job submission on the grid.

In DataGrid, parallel job support is currently achieved using the MPI library, in this case a portable
implementation of MPI called MPICH.

Currently, execution of parallel jobs is supported only on single CE’s but in the future it may be possible
to have parallel execution of jobs in different CE’s.

From a user point of view, the submission of a parallel job is very similar to the ones we have been trying
before (“single jobs”). All we need is to give JobType the value MpiCh and specify the number of nodes
we want to use in our job execution.

The JDL for this example is the following one (parallel.jdl):

[
JobType = "MpiCh";
NodeNumber = 4;
Executable = "cpi";
InputSandbox = {"cpi"};
OutputSandbox = {"err", "out"};
StdOutput = "out";
StdError = "err";
]

Note that an additional Requirement will be added to the JDL specifying that the MPICH software should
be installed on all WNs of the selected CE. If none has it currently installed, we will not be able to run
this example.

The job consists on the execution of a PI calculation application - cpi - which is provided on the exercise’s
files.

We’ll have to issue the following sequence of commands for this example: grid-proxy-init
edg-job-submit parallel.jdl
edg-job-status JobId
edg-job-get-output JobId

In the out file retrieved we will have the value for PI as well as other information concerning the job
execution.

IST-2000-25182 PUBLIC 30/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

2.14. EXERCISE JS-14: JOB CHECKPOINTING EXAMPLE

Goal: In this exercise we’ll learn how to define and create checkpoints for a job, saving it’s state and
allowing it to be resumed later.

There are two main new features that Job Checkpointing brings to EDG.

At first, it gives the user the ability to save intermediate states for the jobs, allowing them to be resumed
in case of a system failure. A job simply restarts from the last saved state, which is an important feature
in particular for long-running jobs.

At another level, it gives the ResourceBroker the possibility to stop the execution of a job without neces-
sarily loosing what had been done till that point. This is important in several situations: a new job with
higher priority just arrived and should be run immediately; during execution it is decided that the job is
not suitable for that resource and should be moved elsewhere - in this case, the job will restart in the new
resource from the last saved state; etc...

In EDG’s checkpointing implementation, a user’s application can save it’s state at any time. This state
is defined by the user as a list of ¡var, value¿ pairs. Typical cases where this is important and can be
easily implemented is inside applications composed by a sequence of steps/iterations. The state of the
job could be saved after each one of this steps.

In this example, we’re going to submit a job where checkpointing will be performed. The several states
of the job will be saved and after it’s execution, we’ll resubmit the job specifying a state from where it
should start.

We’ll use this JDL (checkpoint.jdl):

[
JobType = "checkpointable";
Executable = "hsum";
Arguments = " 2000000 200000 gsiftp://lxshare0236.cern.ch/tmp/";
Inputsandbox = {"hsum"};
Outputsandbox = {"err","out"};
StdOutput = "out";
StdError = "err";
Requirements = member("ROOT", other.GlueHostApplicationSoftwareRunTimeEnvironment);
]

Notice the special JobType.

hsum needs ROOT to be installed in the WN, so we’ll have to make sure it is available. Also, the
arguments passed to the application represent the following: . first argument: 2000000 - the total number
of events . second argument: 200000 - the number of events between 2 state saving . third argument:
gsiftp://lxshare0236.cern.ch/tmp/ - the gridftp server directory where the histogram files should be saved

Here is the sequence of actions we should perform:

Submit the job issuing the command: edg-job-submit checkpoint.jdl.

Wait for the job to get into Done (Success) status. Check it using edg-job-status jobId.

After it finishes, we can check that the states were successfully saved. At first, list the directory where
we saved the intermediate states: edg-gridftp-ls –verbose gsiftp://lxshare0236.cern.ch/tmp/. Some files
corresponding to the saved states should be in it. After that, retrieve the output of the job with edg-job-
get-output jobId and check the contents of the output file. There should be something close to this:

CHECKPOINTING at Event = 200000 Waiting 10 seconds... ... (some more lines here) ... CHECK-
POINTING at Event = 1800000 Waiting 10 seconds...

IST-2000-25182 PUBLIC 31/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

As we can see, we have the states successfully stored, so although the job was completed, we’ll restart
it just to show how checkpoint works. The first thing to do is to retrieve an intermediate state of the job.
We can do this by issuing edg-job-get-chkpt –cs 1 -o ¡state-file¿ ¡edg-jobid¿. We’re simply retrieving
the last but one saved state, storing it in the file specified in ¡state-file¿. The ¡edg-jobid¿ is the regular
job identifier. Check other options available for this command with the –help option.

All that’s left is to submit the job again, but this time passing it the file with the retrieved state. After the
job is finished we can do the normal procedure of returning the output and notice that only the last part
of the job was executed. We can also check the gridftp server directory where the files were stored and
see how only the file corresponding to the last step in the job was modified.

The complete sequence of commands for this exercise is the following: grid-proxy-init
edg-job-submit checkpoint.jdl
edg-job-status JobId
edg-job-get-output JobId
edg-job-get-chkpt --cs 1 -o state-file JobId
edg-job-submit -chkpt state-file checkpoint.jdl
edg-job-status JobId
edg-job-get-output JobId

The source code for the C++ application is as follows:

#include <TCanvas.h>
#include <TH1.h>
#include <TF1.h>
#include <TH2.h>
#include <TProfile.h>
#include <TNtuple.h>
#include <TFile.h>
#include <TROOT.h>
#include <TFrame.h>
#include <TRandom.h>
#include <TSystem.h>
#include <TBenchmark.h>
#include <TApplication.h>
#include <TSlider.h>
#include <unistd.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/wait.h>
// checkpointing library
#include "edg/workload/checkpointing/client/checkpointing.h"

/*
* MACRO meaning:
* WITH_IT => use the iterator
* WITH_X => use graphical interface
* WITH_IMG => take a snapshot of the last chekpointing event
* (needs WITH_X set to true)
*/

using namespace edg::workload::checkpointing;

#define BUF_SIZE 1000

TROOT mRoot("Tracking", "Tracking Root Interface");

IST-2000-25182 PUBLIC 32/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

int main(int argc, char *argv[]) {

std::string file;
bool first;

// temporary file
char *OutFile = "hsum.root";
std::string OutFileCkpt;
int CkptEv, EndEv;
int err;
char *echostr, *hostname, *wd, *tmp;

#ifndef WITH_IT
int BegEv;

#endif

if (argc != 4) {
printf ("Usage: %s <Last_ev> <Ckpt_ev> <SE_path> \n", argv[0]);
exit(-1);

} else {
EndEv = atoi(argv[1]);
CkptEv = atoi(argv[2]);
OutFileCkpt = argv[3];

}

OutFileCkpt.append("hsum_CHKPT");

echostr = (char *) malloc(BUF_SIZE);
tmp = (char *) malloc(BUF_SIZE);
hostname = (char *) malloc(BUF_SIZE);
wd = (char *) malloc(BUF_SIZE);
if ((echostr == NULL) || (tmp == NULL) || (hostname == NULL) || (wd == NULL)) {

printf("Not enough memory\n");
exit(-1);

}

if (!getcwd(wd, 255)) wd = "/tmp/";
gethostname(hostname, 255);

#ifdef WITH_X
TApplication tApp("Buuu", &argc, argv);

#endif

// Create a new canvas.
TCanvas *c1 = new TCanvas("c1","The HSUM example",200,10,600,400);
c1->SetFillColor(42);
c1->GetFrame()->SetFillColor(21);
c1->GetFrame()->SetBorderSize(6);
c1->GetFrame()->SetBorderMode(-1);

TFile *hsumfile;
TH1F *total, *main, *s1, *s2;
TSlider *slider = 0;

try { // initialize a state quering the LB
JobState state(JobState::job);

IST-2000-25182 PUBLIC 33/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

try {
// take the name of the chkpt_file from the State if it exists
file = state.getStringValue("hsum_filename")[0];
printf ("Restarting the Job from the last saved state...\n");
fflush(NULL);
// copy the last chkpted file from the SE
sprintf(echostr, "globus-url-copy %s file://%s/%s", file.c_str(), wd, OutFile);
err = system(echostr);
if (WIFSIGNALED(err) || (WIFEXITED(err) && (WEXITSTATUS(err) != 0))) exit(2);
hsumfile = new TFile(OutFile, "UPDATE");
total = (TH1F*)gROOT->FindObject("total");
main = (TH1F*)gROOT->FindObject("main");
s1 = (TH1F*)gROOT->FindObject("s1");
s2 = (TH1F*)gROOT->FindObject("s2");

} catch (ULException) { // the attribute has not been set => first run
hsumfile = new TFile(OutFile,"RECREATE","Demo ROOT file with sum histogram");
total = new TH1F("total","This is the total distribution",100,-4,4);
main = new TH1F("main","Main contributor",100,-4,4);
s1 = new TH1F("s1","This is the first signal",100,-4,4);
s2 = new TH1F("s2","This is the second signal",100,-4,4);
total->Sumw2(); // this makes sure that the sum of squares of weights will be stored
total->SetMarkerStyle(21);
total->SetMarkerSize(0.7);
main->SetFillColor(16);
s1->SetFillColor(36);
s2->SetFillColor(46);

}
#ifndef WITH_IT

try {
// take the number of the first event from the State if it exists
BegEv = state.getIntValue("first_event")[0];
printf ("Start from event %d\n", BegEv);
fflush(NULL);

} catch (ULException) { // the attribute has not been set
BegEv = 0;

}
#endif

try {
// take the boolean variabile to decide which distribution must be plotted
first = state.getBoolValue("distribution")[0];

} catch (ULException) { // the attribute has not been set
first = true;

}

// Fill histograms randomly
gRandom->SetSeed();
Int_t i;
const Int_t kUPDATE = 500;
Float_t xs1, xs2, xmain;

#ifdef WITH_IT
try {

// Step st = state.getCurrentStep();
while (Step st = state.getCurrentStep()) {
i = st.getInteger();

IST-2000-25182 PUBLIC 34/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

st = state.getNextStep();
#else

for (i=BegEv; i < EndEv; i++) {
#endif

if (first) {
xmain = gRandom->Gaus(-1,1.5);
xs1 = gRandom->Gaus(-0.5,0.5);
xs2 = gRandom->Landau(1,0.15);

} else {
xmain = gRandom->Gaus(3,0.75);
xs1 = gRandom->Gaus(-1.75,0.25);
xs2 = gRandom->Landau(-3,0.20);

}

main->Fill(xmain);
s1->Fill(xs1,0.3);
s2->Fill(xs2,0.2);
total->Fill(xmain);
total->Fill(xs1,0.3);
total->Fill(xs2,0.2);
if (i && (i%kUPDATE) == 0) {
if (i == kUPDATE) {

total->Draw("e1p");
main->Draw("same");
s1->Draw("same");
s2->Draw("same");
c1->Update();
slider = new TSlider("slider","test",4.2,0,4.6,total->GetMaximum(),38);
slider->SetFillColor(46);

}
if (slider) slider->SetRange(0,Float_t(i)/10000.);
c1->Modified();
c1->Update();
if (gSystem->ProcessEvents())

break;
}

// checkpointing...
if (i && (i%CkptEv) == 0) {
if (((i/CkptEv)%2) == 0) first = !first; // change the distribution definitions

#ifdef WITH_IMG
c1->SaveAs("sumshot.gif");

#endif
printf ("CHECKPOINTING at Event = %d\n", i);
fflush(NULL);
hsumfile->Write();

#ifndef WITH_IT
// store the BegEv
state.saveValue("first_event", i+1); // the next first event should be i+1, right?

#endif
// copy the OutFile to the SE
sprintf(tmp, "%s_%s_%d.root", OutFileCkpt.c_str(), gethostbyname(hostname)->h_name, i);
sprintf(echostr, "globus-url-copy file://%s/%s %s", wd, OutFile, tmp);
err = system(echostr);
if (WIFSIGNALED(err) || (WIFEXITED(err) && (WEXITSTATUS(err) != 0))) exit(2);
// store the name of the file in the State object

IST-2000-25182 PUBLIC 35/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

state.saveValue("hsum_filename", (std::string)tmp);
state.saveValue("distribution", first);

try {
err = state.saveState();
if (err) {

printf ("Save State failed!!! Error: %d \n", err);
// exit(1); // don’t exit if a save failed
}

} catch (ChkptException &exc) {
printf ("CHECKPOINTING failed!!! Exception message: %s\n", exc.dbgMessage().c_str());
//exit(1); // don’t exit if a save failed

}
printf("%s\n", "Waiting 10 seconds...");
sleep(10);

}
} // close while or for

#ifdef WITH_IT
} catch (EoSException) {}

#endif

//Save all objects in this file
total->Draw("sameaxis"); // to redraw axis hidden by the fill area
c1->Modified();

} catch (ChkptException &exc) { // failed to retrieve the first state --> abort
printf ("CHECKPOINTING failed!!! Exception message: %s\n", exc.dbgMessage().c_str());
exit(1);

}

// Note that the file is automatically close when application terminates
// or when the file destructor is called.

free(hostname);
free(tmp);
free(echostr);
free(wd);

exit(0);

#ifdef WITH_X
tApp.Run(kTRUE);

#endif
}

IST-2000-25182 PUBLIC 36/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

3. DATA MANAGEMENT EXERCISES

In the exercises JS-1 to JS-11 we have seen how to submit jobs, query the job’s status, retrieve the output
and packaging everything needed by our job into the Input and Output sandboxes. However, one does
not use Input and Output Sandboxes for Data Management on the Grid.

On the contrary, the idea of using sandboxes is more thought as for providing small auxiliary files to the
jobs, like data cards for the various Monte Carlo events generating programs, or small required libraries
for the executables.

We still have to discover and understand how to handle large files, distributed all over the Grid, how to
make other users aware of the availability of files owned by us on our Storage Elements and how to be
able to find out where to find useful replicas for us to be used in our jobs.

For this purpose there is a set of tools that allows users to replicate files from one Storage Element to
another, to register files with a Replica Catalog, etc. The main tool for this purpose is the EDG Replica
Manager that uses a set of services (Replica Location Service, Replica Metadata Catalog, Replica
Optimization Service etc. In this set of exercises you will learn how to use the replica manager as well
as the associated services. In more details, the EDG Replica Manager has a complete set of tools to
create replicas of files between Storage Elements, Computing Elements (Worker Nodes) etc. and register
files in the Replica Catalogs.

For the exercises we assume that you use the following User Guides for the relevant tools and services:

• EDG Replica Manager, Replica Location Service, Replica Metadata Catalog:

http://cern.ch/edg-wp2/replication/documentation.html

• Replica Optimization Service

http://cern.ch/edg-wp2/optimization/documentation.html

For more background on the overall set of data management services provided by EDG, refer to the web
following web sites:

http://cern.ch/edg-wp2/publications.html
http://web01.esc.rl.ac.uk/projects/DataGrid/wp5/documentation.html

In following examples you will use several files names (Logical File Name, SURL, etc.) which require a
specific syntax. For more information, please refer to the Glossary in Section 6.1..

NOTE

Filenames used in these examples are to be taken as example names.

When registering files into Replica Catalogs, LFNs must be unique, moreover, you are all sharing the
same directories. Therefore, try to use fancy and imagination to use your own filenames in order to avoid
conflicts. A good way could be using filenames containing your complete name.

IST-2000-25182 PUBLIC 37/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

3.1. EXERCISE DM-1: DISCOVER GRID STORAGE

Goal: The goal of this exercise is to find out where Grid Storage is available and how it can be accessed.
With the use of simple tools you will learn how to discover storage space in the Grid, mainly using
the following command:

• edg-rm printInfo

In general, all Storage Elements registered with the Grid publish, through the Grid Information System,
the location of the directory where to store files. This directory on the SE is usually VO dependent (each
defined VO has its own one) but the location can also be hidden by the underlying Storage Element or
Storage Resource Manager. In EDG, a Storage Element is mainly implemented by a Storage Resource
Manager and thus both terms are used in the remainder of this document.

The are several ways to retrieve information about Storage Elements and their attributes. One way is to
directly query the Information System and you will learn how to do so in the exercises about Information
Systems (see Section 4.). In addition, the EDG Replica Manager provides a method called printInfo
to query the most basic information of a Storage Element. Here we give details on how to do that.

Issue the following EDG Replica Manager command:

> edg-rm --vo=tutor printInfo

Note that we assume that you use the VO tutor. A possible (reduced) output looks as follows:

VO used : tutor
default SE : pcrd24.cern.ch
default CE : lxshare0313.cern.ch
Info Service class : org.edg.data.reptor.info.InfoServiceStub

RMC endpoint : http://adc0013.cern.ch:8080/edg-replica-metadata-
catalog/services/edg-replica-metadata-catalog
LRC endpoint : http://adc0013.cern.ch:8080/edg-replica-location/
services/edg-local-replica-catalog
ROS endpoint :
http://lxshare0343.cern.ch:8080/edg-replica-optimization/services/
edg-replica-optimization

List of CE ID’s : gppce06.gridpp.rl.ac.uk:2119/jobmanager-pbs-S
gppce06.gridpp.rl.ac.uk:2119/jobmanager-pbs-M
gppce06.gridpp.rl.ac.uk:2119/jobmanager-pbs-L

[...]

List of SE ID’s : gppse02.gridpp.rl.ac.uk
lxshare0408.cern.ch
tbn07.nikhef.nl

SE at RAL :
name : RAL
host : gppse06.gridpp.rl.ac.uk
type : disk

accesspoint : /flatfiles/SE01
VOs : lhcb,cms,tutor

VO directories : lhcb:/lhcb,cms:/cms,tutor:/tutor
protocols : file,rfio,gsiftp

IST-2000-25182 PUBLIC 38/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

[...]
SE at CERN-DEV :

name : CERN-DEV
host : lxshare0408.cern.ch
type : edg-se

accesspoint : /flatfiles/SE00
endpoint : http://lxshare0408.cern.ch:8080/edg-se-webservice/services/edg-se-webservice

VOs : lhcb,cms,tutor
VO directories : lhcb:/lhcb,cms:/cms,tutor:/tutor

protocols : gsiftp,file,rfio

The output presents information about all possible Computing Elements (CEs) as well as Storage Ele-
ments that are registered with the information service. We are mainly interested in the Storage Elements
and their storage locations. The number of SEs given shows you how many SEs you can possibly use.
Note that you also need to find an SE that allows for your VO (tutor). As a first exercise, go through the
output and discover how many SEs you can use.

The SE can be implemented in several ways which has an impact on the directory where files are stored:

1. The SE is a conventional disk server with a GridFTP interface. That is a simple solution that does
not require additional SE software but has several disadvantages are regards space management on
the disk.

2. On the Storage Element, a particular SRM (or EDG-SE) is running that takes care of space man-
agement, interfacing to Mass Storage Systems etc.

In case of a conventional disk server that runs GridFTP (type : disk, this path might be exposed. In
case the SE is running an SRM or EDG-SE (type : edg-se), the path might not be there since the
SRM decides internally where files can be written to.

In all cases, the VO specific directories can be obtained by combining the following two attributes
accesspoint and VO Directories. For example:

host : lxshare0408.cern.ch
accesspoint : /flatfiles/SE00

VO directories : lhcb:/lhcb,cms:/cms,tutor:/tutor

Thus, files for the VO tutor are written into the directory /flatfiles/SE00/tutor.

ADVANCED AND RELATED EXERCISE

One way to query all possible Storage Elements is to use the Information System (i.e. R-GMA) directly.
You will find details in Section 4. but you can already look ahead and try R-GMA queries like the
following:

rgma> latest select GlueSEUniqueID from GlueSL;

where you select all the unique IDs (i.e. names of Storage Elements). GlueSL stands for “Glue Storage
Library” and corresponds to the SE as indicated in the output of printInfo.

IST-2000-25182 PUBLIC 39/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

3.2. EXERCISE DM-2: START USING THE EDG REPLICA MANGER

Goal: In this example we will use the EDG Replica Manager for copying files from the UI to a known
Grid storage (SE). Next we will list the directory information to check whether the copy operation
was successful.

Note: During this exercise the Replica Catalogue will not be updated since we only perform
a copy rather than a replication operation. File replication will be part of the next exercise.

We will use the following commands:

• printInfo

• copyFile

• list

In this example we issue a grid-proxy-init to get a valid proxy and then we will transfer a file from
the User Interface to one Storage Element just to start learning how to move files around the Grid (see
Figure 10).

Note that the machine names and the directories change over time: please consult your tutorial
web page for the exact machine names or inquire the machine inforatation as shown in exercise
DM-1! All machine names given here are only examples but they are not necessarily the one you
can use.

Figure 10: Basic file copy operation between two Storage Elements

We first create a simple file in the current directory on the UI and next copy it with the EDG Replica
Manager to an SE. For all examples we assume that we are part of the VO “tutor”3 .

Create a file:

echo "file.dat" > file.dat

Copy the file to a known SE. We can get a list of known SEs with the command printInfo:
3In case you are not running these exercises in an EDG tutorial and you part of a different VO (e.g. wpsix, cms, etc.) please

use your personal VO instead.

IST-2000-25182 PUBLIC 40/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

edg-rm --vo=tutor printInfo

Typical SEs are:

List of SE ID’s : pcrd24.cern.ch
ccgridli02.in2p3.fr
gppse06.gridpp.rl.ac.uk
se01.nikhef.nl
testbed007.cnaf.infn.it

Each SE might have a default directory for the files of a particular VO. For instance, on the SE pcrd24.cern.ch
the default directory for VO “tutor” is:

SE at CERN :
name : CERN
host : pcrd24.cern.ch
type : disk

VO Directory : tutor : /data/temp
protocols : gsiftp

We now want to copy the file file.dat from the current directory to the directory /data/temp on the
SE pcrd24.cern.ch

edg-rm --vo=tutor copyFile file://‘pwd‘/file.dat \
gsiftp://pcrd24.cern.ch/data/temp/file.dat

Note that since the source file is available on the local file system, the prefix file: has be used to refer
to a local file.

We can check whether the copy operation was successful with the command list

edg-rm --vo=tutor list gsiftp://pcrd24.cern.ch/data/temp/file.dat

As an additional exercise, try to copy a file from the current SE that you have chosen to an additional SE,
as depicted in Figure 10.

IST-2000-25182 PUBLIC 41/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

3.3. EXERCISE DM-3: FILE REPLICATION WITH THE EDG REPLICA MANGER

Goal: In this example we will use the EDG Replica Manager for replicating files between various SEs
and get familiar with the basic catalogue commands to list and delete replicas.

We will use the following commands:

• copyAndRegisterFile

• replicateFile

• listReplicas

• deleteFile

• listGUID

We first create a file in the current directory that we want to replicate afterwards.

echo ‘‘file.kurt’’ > file.kurt

We now want to copy the file to an SE and register it in the replica catalogue with the logical file name
(LFN) lfn:file.kurt. Note that an LFN needs to start with the prefix lfn:. We also provide a specific
name and directory for the file on the destination SE.

edg-rm --vo=tutor copyAndRegisterFile file://‘pwd‘/file.kurt \
-l lfn:file.kurt \
-d srm://pcrd24.cern.ch/data/temp/file.kurt1

On successfully copying, a GUID is returned which uniquely identifies the replicas of file.kurt (with
the LFN lfn:file.kurt):

guid:ec3ee4d2-a653-11d7-849e-ea0706438314

We can check the replicas of a specific LFN that are registered in the replica catalogue with listReplicas.

edg-rm --vo=tutor listReplicas lfn:file.kurt

As the result we get:

srm://pcrd24.cern.ch/data/temp/file.kurt1

Now we replicate the file from CERN to an SE at France. We only specify the destination host and let
the Replica Manager create the file name and place the file into the correct directory.

edg-rm --vo=tutor replicateFile srm://pcrd24.cern.ch/data/temp/file.kurt1 \
-d ccgridli07.in2p3.fr

The generated file name and thus the second replica looks, for instance, like follows:

srm://ccgridli07.in2p3.fr//tmp/generated/2003/06/24/file7572af6a-a655-11d7-8b9d-db2322879f7d

When we now list the replicas of our specific LFN lfn:file.kurt

IST-2000-25182 PUBLIC 42/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

edg-rm --vo=tutor listReplicas lfn:file.kurt

we should get two replicas at different locations:

srm://ccgridli07.in2p3.fr//tmp/generated/2003/06/24/file7572af6a-a655-11d7-8b9d-db2322879f7d
srm://pcrd24.cern.ch/data/temp/file.kurt1

We finally want to create a third replica in Scotland. As a source we specify the LFN and let the Replica
Manager find the best copy which is then replicated.

edg-rm --vo=tutor replicateFile lfn:file.kurt -d grid01.ph.gla.ac.uk

Assume that we need all the storage space at CERN for some other application and so we want to delete
the replica at the CERN SE.

edg-rm --vo=tutor deleteFile srm://pcrd24.cern.ch/data/temp/file.kurt1

Now assume that none of the replicas is needed any more and we want to delete all of them. In case we
have forgotten the GUID of the replicas associated with a specific LFN, we can retrieve it with:

edg-rm --vo=tutor listGUID lfn:file.kurt

We can now delete all the files by specifying the GUID we have just retrieved. Note that with the option
-a we delete all replicas of a specific GUID.

edg-rm --vo=tutor deleteFile guid:ec3ee4d2-a653-11d7-849e-ea0706438314 -a

When we now list the replicas of LFN file.kurt

edg-rm --vo=tutor listReplicas lfn:file.kurt

we should get the following result:

java.io.FileNotFoundException: File not in catalog : lfn:file.kurt

since there is no replica anymore of that LFN.

3.3.1. ADVANCED EXERCISE - USING A STATIC CONFIGURATION FILE FOR INFORMATION SERVICE

Note that the following exercises is for advanced users only.

Goal: In the following exercise you are asked to use the EDG Replica Manager with a static configu-
ration file for the Information Service and then remove/add an SE that only has a disk and does
not provide an SRM interface. This is a very useful exercise in case the Information Service is
not on-line and you still need to run the EDG Replica Manager commands. In addition, it is also
useful if you need to quickly add new machines (SEs) and test them: this it is very helpful for
debugging.

IST-2000-25182 PUBLIC 43/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

For this exercise you need to consult the EDG Replica Manager Installation Guide which can be ob-
tained from the same link where you also find the User Guide.

Here, we only give you a few hints and you would need to find out the details yourself:

1. You need to change the configuration file edg-replica-manager.conf and point to it when you
use an EDG Replica Manager command.

2. In the configuration file edg-replica-manager.conf you can set the information service that
you want to use. You want to configure the replica manager in a way that it does not contact
an information service but it uses a local configuration file from which it obtains all SE and CE
information etc.

3. You need to create a file called info-service-stub.properties and copy it to your home di-
rectory unless your machine is not already configured in a way that it uses a configuration file. For
more hints on what this file has to look like, please refer to the Appendix of the Installation Guide
or to the following web page:

http://datagrid.in2p3.fr/cvsweb/edg-reptor/config/info-service-stub.properties

4. Make sure you point your configuration to the file above (hint: check in the file edg-replica-manager.conf.

Once you have achieved all this, you can try to experiment with the file info-service-stub.properties
and remove/add a new Storage Element or Computing Element.

Note that the information you see in the info-service-stub.properties is very similar to the one
provided by the command printInfo. Please check Exercises DM1 for synergies.

IST-2000-25182 PUBLIC 44/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

3.4. EXERCISE DM-4: USING THE REPLICA CATALOG

Goal: After some preliminary replica catalogue interaction in the previous exercise, we now go a bit
more into detail with using the replica catalogue with the EDG Replica Manager and use the
following commands:

• addAlias, removeAlias

• registerFile, unregisterFile

As described in detail in the EDG Replica Manager User Guide4, the replica catalogue components
consists of two parts:

1. Replica Location Service (RLS): you will get more information in Exercise DM-6

2. Replica Metadata Catalog (RMC): you will get more information in Exercise DM-7

Although as a user you would not need to know all the details for simple replication commands, but
for more complex queries and inserts you would need to distinguish that the two services store different
information as depicted in Figure 11.

GUID

Logical
Name

Logical
Name

Logical
Name

Name
Physical

Name

Name

Name
Physical

Physical

Physical

Logical
Name

RMC

RLS

Logical File Name − GUID − SURL (= Physical Name)

Figure 11: The Logical File Name to GUID mapping is maintained in the Replica Metadata Catalog,
the GUID to Physical File Name (SURL) mapping in the RLS.

In the previous example, the commands listReplicas and listGUID were used in order to retrieve
certain SURLs5 for details on file naming conventions or GUIDs based on a given filename. These
commands use both catalogues transparently. We first show how additional commands can be used and
then point out the limitations of the replica manager interface and refer to the specific interfaces for the
RLS and RMC respectively.

For files that are already stored on a Storage Element but not yet registered with a Replica Catalogue, we
can use the command registerFile as follows:

edg-rm --vo=tutor registerFile \
srm://pcrd24.cern.ch/data/temp/my-name-second-name

4http://cern.ch/edg-wp2/replication/documentation.html
5refer to Section 6.1.

IST-2000-25182 PUBLIC 45/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

Note that the file might not be there yet. Please transfer the file there and then issue the command above
depending on your name. The command then returns a GUID, e.g. guid:85c71452-a714-11d7-89d1-
fd96669a052b.

A GUID that is registered with the Replica Location Service can have several LFNs (also referred to as
Alias). We now show how you can add and remove several aliases for a given GUID. For example add,
two alias names to the given GUID:

edg-rm --vo=tutor addAlias guid:85c71452-a714-11d7-89d1-fd96669a052b \
lfn:my-first-lfn

edg-rm --vo=tutor addAlias guid:85c71452-a714-11d7-89d1-fd96669a052b \
lfn:my-second-lfn

Then, we can remove one of the alias names:

edg-rm --vo=tutor removeAlias guid:85c71452-a714-11d7-89d1-fd96669a052b \
lfn:my-second-lfn

In case you do not want to have the file registered anymore in the Replica Catalogue but you do not want
to delete the file, you can use the command unregisterFile:

edg-rm --vo=tutor unregisterFile guid:85c71452-a714-11d7-89d1-fd96669a052b \
srm://pcrd24.cern.ch/data/temp/my-name-second-name

As an additional exercise, please try different combinations of the commands to get an idea about the
LFN/alias usage.

Note: As you might have already realised, the interface to the replica catalogue (provided by the EDG
Replica Manager) does not give you a full set of query functions like wild card queries SURLs, GUIDs,
LFNs etc. In order to do so, you would need to use the direct interfaces to the RLS and RMC as we will
see in the the exercises DM-6 and DM-7.

IST-2000-25182 PUBLIC 46/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

3.5. EXERCISE DM-5: REPLICA OPTIMISATION WITH THE EDG REPLICA MANAGER

Goal: In this example we will use the EDG Replica Manager basic file replication and optimisation.

We will use the following commands:

• copyAndRegisterFile

• replicateFile

• listReplicas

• listGUID

• listBestFile

• getBestFile

• getAccessCost

• deleteFile

In the scenario the user knows that there is a file available at CERN, that has been put on a host accessible
through GridFTP. It is not a grid-aware store, so first the user has to copy the file to a Storage Element
and register it in the Grid. Say that for some reason the user cannot copy it to the local CERN Storage
Element but has to copy it to the one at IN2P3 in France.

In the example the file is called higgs0 and resides at testbed008.cern.ch/tmp/.

Copy and registration is an atomic operation. In the example we assign also a Logical File Name alias to
it in the process, lfn:higgs, which is easier to remember than the GUID that is returned by the call:

edg-rm --vo=tutor copyAndRegisterFile gsiftp://testbed008.cern.ch/tmp/higgs0 \
-l lfn:higgs -d srm://ccgridli02.in2p3.fr/edg/StorageElement/dev2/tutor/higgs

A GUID is created and returned to the screen:

guid:7c29f32b-4964-11d7-a86c-9ee9a33b1f19

To verify whether the operation got successfully executed, we can issue listReplicas:

edg-rm --vo=tutor listReplicas lfn:higgs

which yields:

srm://ccgridli02.in2p3.fr/edg/StorageElement/dev2/tutor/higgs

In order to retrieve the GUID based on the LFN, we can issue

> edg-rm --vo=tutor listGUID lfn:higgs

As a second step, the user might want to have a replica of this data file available at NIKHEF in the
Netherlands, because he intends to share it or to submit jobs that require resources at NIKHEF. A replica
can be created using the replicateFile command:

edg-rm --vo=tutor replicateFile lfn:higgs \
-d srm://se01.nikhef.nl/flatfiles/tutor/higgs

IST-2000-25182 PUBLIC 47/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

The command confirms its execution by returning the actual SURL used. If the -d option is omitted, an
automatic SURL would have been created. Here the output is:

srm://se01.nikhef.nl/flatfiles/tutor/higgs

To list all replicas now in the system, we can issue listReplicas again:

edg-rm --vo=tutor listReplicas lfn:higgs

which yields:

srm://ccgridli02.in2p3.fr/edg/StorageElement/dev2/tutor/higgs
srm://se01.nikhef.nl/flatfiles/tutor/higgs

To see which replica has the best network connection to CERN, we can use listBestFile:

edg-rm --vo=tutor listBestFile lfn:higgs -d pcrd24.cern.ch

The output is, for example:

srm://se01.nikhef.nl/flatfiles/tutor/higgs

which means that the file at NIKHEF can be made available at CERN faster than the one from LYON.

We now want to see the file access costs of the best replica with respect to CERN, NIKHEF and Lyon.

edg-rm --vo=tutor getAccessCost -l lfn:higgs \
-d lxshare0313.cern.ch ce01.nikhef.nl ccgridli01.in2p3.fr

The output is:

Access Cost 0 :
CE = lxshare0313.cern.ch
0:srm://se01.nikhef.nl/flatfiles/tutor/higgs
TotalTime = 0.13

Access Cost 1 :
CE = ce01.nikhef.nl
0:srm://se01.nikhef.nl/flatfiles/tutor/higgs
TotalTime = 0.0

Access Cost 2 :
CE = ccgridli01.in2p3.fr
0:srm://ccgridli02.in2p3.fr/edg/StorageElement/dev2/tutor/higgs
TotalTime = 0.0

The list is grouped by the CEs given on the command line. For each CE the ’best’ replica is listed and
the time it would take to make it available locally. We can see that the expected access cost to CERN
is 0.13 sec for the replica from NIKHEF, which is better than the one at Lyon (so that one is not listed
at all). For the other sites the access cost is 0 since the file is already locally available and no network
transfer is required.

To actually make the best file available at CERN, we can issue getBestFile

IST-2000-25182 PUBLIC 48/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

edg-rm --vo=tutor getBestFile lfn:higgs -d pcrd24.cern.ch

The output is something like:

srm://pcrd24.cern.ch/data/temp/a6289c7c-4966-11d7-bc63-d91230733e2d

We should now have three replicas:

edg-rm --vo=tutor listReplicas lfn:higgs

The output is:

srm://pcrd24.cern.ch/data/temp/aaa64014-4967-11d7-a6cc-f7a1ff1899b0
srm://se01.nikhef.nl/flatfiles/tutor/higgs
srm://ccgridli02.in2p3.fr/edg/StorageElement/dev2/tutor/higgs

To delete a replica we can use the deleteFile command:

edg-rm deleteFile lfn:higgs -s ccgridli02.in2p3.fr

As an exercise, please try to create a few more replicas, see how the commands listBestFile and
getBestFile work on your replicas.

IST-2000-25182 PUBLIC 49/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

3.6. EXERCISE DM-6: USING THE REPLICA LOCATION SERVICE

Goal: In this example we will use the Replica Location Service for performing basic replica catalogue
operations.

Note: This exercise is considered for administrators only since the operations do not do any
consistency checks. For instance, one can create a GUID-PFN mapping even though the
PFN does not exist. End users are asked to use the Replica Manager commands for these
operations.

We will use the following commands:

• ping (administration command)

• mappingsByGuid

• mappingsByPfn

• guidExists

• addMapping

• listAttrDefns

• addAttrDefn

• removeAttrDefn

• setPfnAttr

• getPfnAttr

• removePfnAttr

• removePfn

The first step is to check whether the RLS server is up and running. This can be done with a simple ping
command (see below). The hostname of the RLS server can be obtained via the EDG Replica Manager
command printInfo where the entire LRC endpoint (URL) of the service is given as shown in exercise
DM1. You only need to take the host name of the URL.

edg-lrc-admin -i ping -h adc0013.cern.ch

If the server is up, the number of registered GUIDs and PFNs6 is returned:

OK : 553 GUIDs, 573 Pfns.

All the GUID-PFN mappings can be retrieved with:

edg-lrc -i mappingsByGuid "*" -h adc0013.cern.ch

A typical result is:

guid:00c8b0cd-a730-11d7-801a-e343a9ee0c1f, srm://tbn03.nikhef.nl/flatfiles/
tutor/cmkin.out.030425120250
guid:00ccc27e-a720-11d7-9296-a4690dc71cde, srm://se010.fzk.de//flatfiles/
tutor/h4mu_130_1.kinlis.030423101731
guid:0277dacf-a7b4-11d7-8839-b121e819388b, srm://grid001.to.infn.it//flatfiles/
SE00/tutor/filelist.lfn.030423104108

6Note that the term PFN is used here but it is equivalent to the SURL of previous exercises

IST-2000-25182 PUBLIC 50/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

In case you get a security error, you can also try to use the option -i in order to connect to the server in
an insecure mode:

edg-lrc -i mappingsByGuid "*" -h adc0013.cern.ch

The PFN-mappings can be queried in a similar way:

edg-lrc -i mappingsByPfn "*" -h adc0013.cern.ch

For instance, all the PFNs stored at NIKHEF, can be retrieved as follows:

edg-lrc -i mappingsByPfn "*nikhef*" -h adc0013.cern.ch

Result:

guid:00c8b0cd-a730-11d7-801a-e343a9ee0c1f, srm://tbn03.nikhef.nl/flatfiles/
tutor/cmkin.out.030425120250
guid:036be6ce-a7ae-11d7-92ad-95e140d2ab86, srm://tbn03.nikhef.nl/flatfiles/
tutor/h4mu_130_1.ntpl.030506101324
guid:0401d348-a7b0-11d7-b37b-e2d53058f5eb, srm://tbn03.nikhef.nl/flatfiles/
tutor/ff_cards.cmkin.030425120123
guid:0c47f094-a7b1-11d7-95cc-ba61336cf560, srm://tbn03.nikhef.nl/flatfiles/
tutor/start_cmkin.sh.030425120016
...

Next we create a new GUID-PFN mapping. In order to make sure that our GUID guid:myGuid1 is
unique, we will first check whether it exists in the catalogue.

edg-lrc -i guidExists guid:myGuid1 -h adc0013.cern.ch

Result:

GUID does not exist : ’guid:myGuid1’

edg-lrc -i addMapping guid:myGuid1 pfn:myPfn1 -h adc0013.cern.ch

We can now check whether the mapping was successfully entered:

edg-lrc -i mappingsByGuid "guid:myGuid1" -h adc0013.cern.ch

Result:

guid:myGuid1, pfn:myPfn1

Next we want to add the attribute size to the PFN pfn:myPfn1. Let us first check which attribute
definitions are entered in the catalogue:

edg-lrc -i listAttrDefns -h adc0013.cern.ch

IST-2000-25182 PUBLIC 51/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

Result:

size , string
owner , string

Since the attribute size is already registered, we can set the size of PFN pfn:myPfn1 to say 1000:

> edg-lrc -i setPfnAttr pfn:myPfn1 size 1000 -h adc0013.cern.ch

We can now check whether the operation was successful.

edg-lrc -i getPfnAttr pfn:myPfn1 size -h adc0013.cern.ch

Now we want to add a new attribute called description to the catalogue.

edg-lrc -i addAttrDefn description string -h adc0013.cern.ch

This new attribute will be set for our PFN pfn:myPfn1.

edg-lrc -i setPfnAttr pfn:myPfn1 description "This PFN contains CMS higgs \
candidates" -h adc0013.cern.ch

Let us assume, we do not need the file size attribute of pfn:myPfn1 any more and we wish to delete it:

edg-lrc -i removePfnAttr pfn:myPfn1 size -h adc0013.cern.ch

Now assume that we also do not need to attribute description any more in the whole catalogue:

edg-lrc -i removeAttrDefn description -h adc0013.cern.ch

Finally, we want to remove the GUID-PFN mapping for pfn:myPfn1

edg-lrc -i removePfn guid:myGuid1 pfn:myPfn1 -h adc0013.cern.ch

ADVANCED EXERCISE

Create your own GUID-PFN mappings with different attributes and clean up the catalogue afterwards.

IST-2000-25182 PUBLIC 52/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

3.7. EXERCISE DM-7: USING THE REPLICA METADATA CATALOG

Goal: In this example we will use the Replica Metadata Catalog for performing basic replica metadata
catalogue operations.

Note: This exercise is considered for administrators only since the operations do not do any
consistency checks. For instance, one can create a GUID-alias mapping even though the
alias does not exist. End users are asked to use the Replica Manager commands for these
operations.

We will use the following commands:

• ping (administration command)

• mappingsByGuid

• mappingsByAlias

• guidExists

• addAlias

• listGuidAttrDefns

• listAliasAttrDefns

• addGuidAttrDefn

• setGuidAttr

• getGuidAttr

• removeGuidAttr

• removeGuidAttrDefn

Before we start using the Replica Metadata Catalog, we check whether it is up and running (see below).
The hostname of the RMC server can be obtained via the EDG Replica Manager command printInfo
where the entire RMC endpoint (URL) of the service is given as shown in exercise DM1.

edg-rmc-admin -i ping -h adc0013.cern.ch

As a result we get back the number of GUIDs and aliases that are stored in the catalogue.

OK : 825 GUIDs, 794 Aliases.

All the GUIDs and aliases can be retrieved with:

edg-rmc -i mappingsByGuid "*" -h adc0013.cern.ch

Result:

guid:00c8b0cd-a730-11d7-801a-e343a9ee0c1f, lfn:cmkin.out.030425120250
guid:00ccc27e-a720-11d7-9296-a4690dc71cde, lfn:h4mu_130_1.kinlis.030423101731
guid:017a3910-a7c2-11d7-b237-fbaf79cbba14, lfn:h4mu_130.ntpl.030423102714

Similarity, the mappings by alias can be queried with:

edg-rmc -i mappingsByAlias "*" -h adc0013.cern.ch

IST-2000-25182 PUBLIC 53/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

Next we want to add a new GUID-alias mapping. Before doing so, we make sure that the GUID
guid:myGuid1 is unique and thus does not exist in the catalogue:

edg-rmc -i guidExists guid:myGuid7 -h adc0013.cern.ch

Result:

GUID does not exist : ’guid:myGuid7’

We can now add the mapping:

edg-rmc -i addAlias guid:myGuid7 alias:alias7 -h adc0013.cern.ch

We now check whether the mapping was successfully entered:

edg-rmc -i mappingsByGuid "guid:myGuid7" -h adc0013.cern.ch

Result:

guid:myGuid7, alias:alias7

Next, we want to add a new attribute definition. The respective attributes can be checked with:

edg-rmc -i listGuidAttrDefns -h adc0013.cern.ch

edg-rmc -i listAliasAttrDefns -h adc0013.cern.ch

Assume we want to add the attribute owner for the GUID guid:myGuid7 and enter a specific value.

edg-rmc -i addGuidAttrDefn owner string -h adc0013.cern.ch

edg-rmc -i setGuidAttr guid:myGuid7 owner "kurt" -h adc0013.cern.ch

We can check the whether the entry was entered successfully:

edg-rmc -i getGuidAttr guid:myGuid7 owner -h adc0013.cern.ch

Result:

kurt

Next we want to remove the GUID attribute again:

edg-rmc -i removeGuidAttr guid:myGuid7 owner -h adc0013.cern.ch

Finally, we want to remove the GUID attribute definition from the whole catalogue:

edg-rmc -i removeGuidAttrDefn owner -h adc0013.cern.ch

ADVANCED EXERCISE

Create your own GUID-alias mappings with different attributes and clean up the catalogue afterwards.

IST-2000-25182 PUBLIC 54/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

3.8. EXERCISE DM-8: USING THE EDG REPLICA MANAGER WITHIN A JOB

Goal: In this exercise we are going to use the EDG Replica Manager inside a Job. We will copy a
file from the Worker Node, where it is created, to a Storage Element, and register the file with a
Replica Catalog. The file is a postscript file created by PAW on the worker node (see also exercise
JS-3).

Contrary to the previous examples on Data Management, this time we need to write a JDL file with the
description of the job we want to submit to the system: we create a JDL file which runs PAW on a Worker
Node of a given Computing Element, copies and registers this file using the command:

edg-rm --vo=tutor copyAndRegisterFile

and we finally check that the produced file is correctly registered inside the Replica Catalog. The JDL
we are going to use is the following one:

Executable = "/bin/sh";
Arguments = "edgRM.sh testgrid.ps";
InputSandbox = {"edgRM.sh", "pawlogon.kumac", "testgridnew.kumac", "paw.metafile"};
OutputSandbox = {"stderror.log", "StdOutput.log", "testgrid.ps"};
Stderror = "stderror.log";
StdOutput = "StdOutput.log";
Requirement = Member("CMS-1.1.0", other.GlueHostApplicationSoftwareRunTimeEnvironment);

The issued commands sequence we have to use is the following one :

> grid-proxy-init
>
> edg-job-submit --resource testbed001.cnaf.infn.it:2119/ \
> jobmanager-pbs-medium edgRM.jdl
>
> edg-job-status JobId
>
> edg-job-get-output JobId

Have a look at the file edgRM.sh where the commands executed on the WorkerNode are specified. We
first run the PAW application and after that we register and copy the result file. The reference to an
environment variable - CMS ROOT DIR - is just to make sure that we’ll find the PAW executable on the
remote machine.

To check the presence of the file, issue:

> edg-rm --vo=tutor list gsiftp://grid007g.cnaf.infn.it/shared/tutor

To check the registration with the catalogue, we can do the following where LFN is the logical file name
you want to search for:

> edg-rm --vo=tutor listReplicas -l LFN

IST-2000-25182 PUBLIC 55/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

FOLLOW-UP EXERCISE

Now that the file is registered on the SE with a given LFN, create another job where you specify the LFN
as InputData in the JDL. Next, create a small job that reads the file specified by the LFN.

Hint: try to create a JDL that contains the following parts:

Executable = "my-job.pl";
Stdoutput = "stdoutput";
StdError = "stderror";
InputSandbox = {"my-job.pl"};
OutputSandbox = {"stdoutput","stderror"};
InputData = {"lfn:my-test-lfn"};
DataAccessProtocol = {"file"};
VirtualOrganisation = "tutor";

Note that the file specified with “lfn:my-test-lfn” needs to exists. In the job “my-job.pl” use the file
protocol to open the file and read it.

ADVANCED EXERCISE

As a related problem, to gain experience with the EDG Replica Manager inside jobs, try to do the same
exercise involving the Storage Elements at other locations (see Exercise DM1 for information on how to
obtain additional Storage Elements). In detail, modify the files edgRM.sh and edgRM.jdl accordingly.

IST-2000-25182 PUBLIC 56/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

3.9. EXERCISE DM-9: USE CASE - READ DATA ON THE GRID

Goal: In this exercise you are going to copy a file from a non Grid site to a remote SE. On replicating
the file to various sites, you will retrieve the best file, read the contents and print it on the screen.

Note: In this exercise we only list a set of steps that will guide you through the use case. We do
not provide a detailed list of commands but leave it as a challenge for you to solve the exercise in
the best possible way.

This exercise requires the following steps:

3.9.1. PRE-USE CASE STEPS

These steps are necessary to set up the test data for the use case. You can either use the EDG Replica
Manager based on R-GMA or based on the manual configuration file.

• Create a local test file.

• Place the test file on several SEs remote to the UI (or CE for a job) where you are working. [Hint:
Use a specific LFN to keep track of the replicas. You will need the LFN later on.]

3.9.2. USE CASE STEPS

We assume that replicas are created at several remote SEs.

• Replicate the best file to the close SE. [Hint: use getBestFile]

• Extract the SFN from the SURL that is returned from getBestFile. [Hint: the SFN is the SURL
without the prefix “srm://”]

• Obtain the TURL for the SURL. [Hint: use getTurl]

• Open the file for reading using the TURL.

• Print the file contents on the screen.

Notes: The use case will fail if there is no closeSE, so make sure that this is defined in R-GMA or in
manual configuration files.

IST-2000-25182 PUBLIC 57/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

3.10. EXERCISE DM-10: USE CASE - COPY AND REGISTER JOB OUTPUT DATA

Goal: In this exercise you are going to write a job job1 that produces several output files that are
afterwards copied and registered to various SEs. Next you are going to write a second job that reads
the best files of job1 and prints the output on the screen. This is a typical use case of centralised
data production where the result is distributed to various sites that are part of a particular Virtual
Organisation. These production results are later analysed by users distributed all over the globe.

Note: In this exercise we only list a set of steps that will guide you through the use case. We do
not provide a detailed list of commands but leave it as a challenge for you to solve the exercise in
the best possible way.

The following steps are necessary for implementing this use case:

• Write a simple job job1 that produces 5 output files with random numbers between 0 and 100.

• Copy and register these files to various SEs at the end of the job.

• Register metadata about file size, owner and description of the files.

• Write a second job job2 that reads in the best files of job1 and prints the output on the screen.
[Hint: This step is similar to Exercise 9.]

IST-2000-25182 PUBLIC 58/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

3.11. EXERCISE DM-11: USE CASE - BULK DATA REGISTRATION

Goal: In this exercise you will perform a bulk data registration operation on files that are in a specific
directory on an SE.

Note: In this exercise we only list a set of steps that will guide you through the use case. We do
not provide a detailed list of commands but leave it as a challenge for you to solve the exercise in
the best possible way.

There are several ways to reach this aim. One possibility is to use the replica manager command
bulkCopyAndRegisterFile.

IST-2000-25182 PUBLIC 59/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

4. INFORMATION SERVICE EXERCISES

Information Systems provide to the Grid an up to date view of its resources, to allow their management
and effective usage by users and internal Grid subcomponents.

The Information System deployed with EDG 2.x is R-GMA, Relational Grid Monitoring Architecture.
This is a relational implementation of the GGF’s GMA. This is not a general distributed RDBMS sys-
tem, but a way to use the relational model in a distributed environment where global consistency is not
important. Producers announce themselves with an SQL CREATE TABLE and publish data with an SQL
INSERT. Consumers collect data using an SQL SELECT. Some Producers, the Registry and Schema make
use of an RDBMS as appropriate; but what is central is the relational model.

A number of information providers have been produced by EDG. These are scripts which when invoked
make available the desired information. The EDG information providers scripts cover Site Information,
Computing Element, Storage Element and Network Monitoring. These scripts output data in LDIF
format, a legacy from when the information system was based on LDAP. GIN (Gadget IN), periodically
invokes these scripts and makes the data available via R-GMA.

Start the edg-rgma tool

edg-rgma

A couple of useful commands are

show tables
describe <table>

4.1. EXERCISE IS-1: WITH THE AID OF THE COMMAND LINE TOOL DISCOVER WHAT COMPUT-
ING ELEMENTS ARE AVAILABLE ON THE TESTBED

latest select UniqueID from GlueCE

4.2. EXERCISE IS-2: DISCOVER THE AVAILABLE STORAGE ELEMENTS

latest select UniqueID from GlueSE

4.3. EXERCISE IS-3: EMULATE THE RESOURCE BROKER

In this example we perform some basic selection for the job, i.e. we emulate the Work Load Manager
while performing the matchmaking process.

latest select UniqueID,TotalCPUs,WaitingJobs from GlueCE where WaitingJobs<9

4.4. EXERCISE IS-4: FIND OUT WHICH ARE THE RELATED STORAGE ELEMENTS

Now find the Storage Elements that are related to a Computing Element of your choice (substitute XXXX
with a UniqueID obtained from the previous search).

latest select GlueSEUniqueID from GlueCESEBind where GlueCEUniqueID=’XXXX’

IST-2000-25182 PUBLIC 60/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

4.5. EXERCISE IS-5: AVAILABLE SPACE ON THE STORAGE ELEMENT

Next find out how much available space the Storage Element has. You will need to substitute XXXX
with a GlueSEUniqueID, use the value you obtained from the previous search.

latest select Root,AvailableSpace from GlueSA where GlueSEUniqueID=’XXXX’

4.6. EXERCISE IS-6: JOINS

See if you can now combine the last 2 queries into 1 SQL statement.

4.7. EXERCISE IS-7: R-GMA BROWSER

The R-GMA Browser provides a web interface to the information and monitoring system. It is possible
to examine the structure of the schema as well as the published data.

http://gppic02.gridpp.rl.ac.uk:8080/R-GMA/index.html}

Take some time to look at the browser, in particular the EDG-Information-Providers. See what types of
producers are available for the GlueCE

Now have a look at the table for Service.

ADVANCED EXERCISE

Using either the Java or C++ API write a program that will publish records to this table at a configurable
time interval using a StreamProducer. An extract form the “Users Guide” is includes below. The full
“Users Guide” can be found at:

http://hepunx.rl.ac.uk/edg/wp3/documentation/doc/guide/index.html

And the API guides can be found at:

http://hepunx.rl.ac.uk/edg/wp3/documentation/doc/api/java/index.html

and

http://hepunx.rl.ac.uk/edg/wp3/documentation/doc/api/cpp/index.html

Use the browser to check that you are publishing your data correctly.

An Archiver re-publishing to a LatestProducer for the Service table has already been instantiated and will
be collecting information from all Producers. You should be able to see your data with a “Latest” query.
Try modifying the data you are publishing and check the change propagates through to the “Latest”
producer.

IST-2000-25182 PUBLIC 61/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

4.8. EXTRACT FROM THE USERS GUIDE - STREAMPRODUCER

In contrast to the DataBaseProducer and LatestProducer, the StreamProducer does not store tuples within
a Database. Instead, published tuples are added to a buffer maintained by the StreamProducer mediator.
As a result, the StreamProducer is not persistent between servlet container restarts.

When a tuple is published using a StreamProducer, the tuple is streamed to all connected Consumers.
This approach therefore ”pushes” tuples on to the Consumer creating a broadcast effect.

A Single StreamProducer can produce any number of tables. (Note - clarify, check only applies to
StreamProducer when update document.)

To create a new StreamProducer use the following:

myProducer = new StreamProducer();

The next step is to declare a table for publishing tuples:

myProducer.declareTable
(‘‘ServiceStatus’’, # table name
‘‘WHERE hostName = ’infocat.gridpp.rl.ac.uk’’’, # predicate
‘‘CREATE TABLE ServiceStatus (service VARCHAR(30))’’) # create table

Although no data is stored within a database, declaring the table is still necessary to define the tuple
content that will be published.

The setMaxBufferSize method is used to set the buffer size of the StreamProducer.

myProducer.setMaxBufferSize(1024);

To set the time-to-live value for the stored tuples, use the setMinRetentionPeriod method.

myProducer.setMinRetentionPeriod(new TimeInterval(1200));

To publish data, an SQL INSERT statement is used, which is passed as a parameter to the insert method:

myProducer.insert
(‘‘INSERT INTO ServiceStatus # table name
(hostName, name, VO, status, message) # columns
VALUES (’infocat.gridpp.rl.ac.uk’, ’GIN’, ’Atlas’, # values

’OK’,’GIN is running’)’’)

When defining a termination interval for the StreamProducer, use the same setTerminationInterval
method.

Note, when the StreamProducer is no longer required, be sure to call the undeclareTable and close
method.

The following is example code from all available languages for the StreamProducer.

Java
myProducer = new StreamProducer();
myProducer.declareTable

(‘‘ServiceStatus’’, ‘‘WHERE (hostName = ’infocat.gridpp.rl.ac.uk’)’’);

IST-2000-25182 PUBLIC 62/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

myProducer.setTerminationInterval(new TimeInterval(1200));
myProducer.setMaxBufferSize(1024);
myProducer.insert

(‘‘INSERT INTO ServiceStatus ‘‘+
‘‘(hostName, name, VO, status, message) ‘‘+
‘‘VALUES (’infocat.gridpp.rl.ac.uk’, ’GIN’, ’Atlas’, ’OK’, ’GIN is running’)’’);

myProducer.undeclareTable(‘‘ServiceStatus’’);
myProducer.close();

C++
myProducer= new edg::info::StreamProducer();
myProducer->declareTable

(‘‘ServiceStatus’’, ‘‘WHERE (hostName = ’infocat.gridpp.rl.ac.uk’)’’);
myProducer->setTerminationInterval(new edg::info::TimeInterval(1200));
myProducer->setMaxBufferSize(1024);
myProducer->insert

(‘‘INSERT INTO ServiceStatus
(hostName, name, VO, status, message)
VALUES (’infocat.gridpp.rl.ac.uk’, ’GIN’, ’Atlas’, ’OK’, ’GIN is running’)’’);

myProducer->undeclareTable(‘‘ServiceStatus’’);
delete myProducer;

IST-2000-25182 PUBLIC 63/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

5. APPENDIX: ALTERNATIVE INFORMATION SERVICE: MDS

R-GMA is the official information service in the current EDG release. However, EDG software is also
compatible with the Globus MDS information system. Below, you find some details on MDS.

Globus MDS 2.1 (Metacomputing Directory Service – now called Monitoring and Discovery Service)
is a directory service based on the LDAP (Lightweight Directory Access Protocol). Directory Services
are read-access optimized data bases; they are intended for systems with frequent read access rather than
frequent write access. In Directory Services the complexity due to supporting transactions operation
mode is avoided. LDAP is based on four models dealing with Information, Naming, Functional and
Security. Data are organized in Object Classes, in a hierarchical object model, and all classes are derived
from the top class. The LDAP server can be queried specifying the particular class of objects to be
returned (using filters) and specifying the starting node – in the directory structure – from which we want
to retrieve information. This is done by specifying the DN (Distinguished Name) of the starting node for
the needed information. This is the base DN parameter of a LDAP search.

Entries have attributes, whose name can be specified in the query string. To describe in detail LDAP is
out of the scope of this Tutorial. We want to show here just a few examples on how to get information
from the Grid Information Systems.

All relevant resources run a LDAP daemon called slapd. As a convention Globus MDS uses port 2135.

Globus MDS is built on OpenLDAP. The Lightweight Directory Assess Protocol (LDAP) offers a hier-
archical view of information in which the schema describes the attributes and the types of the attributes
associated with data objects. The objects are then arranged in a Directory Information Tree (DIT).

A number of information providers have been produced. These are scripts which when invoked by the
LDAP server make available the desired information. The information providers include Site Informa-
tion, Computing Element, Storage Element and Network Monitoring scripts.

Within MDS the information providers are invoked by a local LDAP server, the Grid Resource Infor-
mation Server (GRIS). “Aggregate directories”, Grid Information Index Servers (GIIS), are then used to
group resources. The GRISs use soft state registration to register with one or more GIISs. The GIIS can
then act as a single point of contact for a number of resources, i.e. a GIIS may represent all the resources
at a site. In turn a GIIS may register with another GIIS, in which case the higher level GIIS may represent
a country or a virtual organisation.

As MDS is based on LDAP, queries can be posed to the current Information and Monitoring Service
using LDAP search commands. An LDAP search consists of the following components:

ldapsearch \
-x \
-LLL \
-H ldap://ced-ii0.datagrid.cnr.it:2135 \
-b ’Mds-Vo-name=datagrid,o=grid’ \
’objectclass=ComputingElment’ \
CEId FreeCPUs \
-s base|one|sub

Explanation of fields:

IST-2000-25182 PUBLIC 64/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

-x ”simple” authentication

-LLL print output without comments
-H ldap://ced-ii0.datagrid.cnr.it:2135 uniform resource identifier

-b ’Mds-Vo-name=datagrid,o=grid’ base distinguished name for search

’objectclass=ComputingElment’ filter

CEId FreeCPUs attributes to be returned

-s base scope of the search specifying just the base object,
one-level or the complete subtree

As another example, the main entry point in MDS is the Information Index that can then be queried.
Please check with your tutor to get information about a valid information index. Below, there are some
examples but the hostnames are not correct names:

ldapsearch -x -l 30 -L -h ced-ii0.datagrid.cnr.it -p 2170 \
-b "mds-vo-name=local, o=grid" "objectclass=*"

The Information Index contains main relevant information concerning the various Computing Elements
and Storage Elements (belonging respectively to the testbed) is provided in a formatted way.

To take a direct look at the registered Storage Elements on the Grid information published by the
Grid information systems, one can query the MDS LDAP servers hosting the whole hierarchy of MDS
GRIS/GIIS information belonging to the various national branches of MDS. In order to find out the name
of the Grid top level MDS (ced-ii0.datagrid.cnr.it) please check the tutorial web page.

ldapsearch -x -l 30 -L -h ced-ii0.datagrid.cnr.it -p 2135 \
-b "mds-vo-name=local, o=grid" "objectclass=*"

IST-2000-25182 PUBLIC 65/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

6. GLOSSARY

6.1. FILE NAMING CONVENTIONS

Throughout the tutorial you are confronted with several ways of naming files (Logical File Names,
naming of replicas at Storage Elements etc.) and thus we give here the exact definitions and some
examples. For the exercises you mainly use LFN and SURL.

LFN Logical File Name A Logical File Name is a user defined alias to a GUID.
Unlike GUIDs, aliases are mutable but they still should
be globally unique. Since the Replica Management Sys-
tem has no control over the creation of LFNs, this global
uniqueness is only weakly enforced. Sometimes also the
term Alias is used to refer to an LFN.

SURL Storage URL An SURL is a locator for a physical file, where the
scheme specific part is understood by a Storage Resource
Manager (SRM). It is a URL where the scheme is ‘srm’
and the host is a valid SRM host.

UUID Universally Unique IDentifier A UUID is a 128 bits long number, and is either guaran-
teed to be different from all other UUIDs generated until
3400 A.D. or extremely likely to be different (depending
on the mechanism chosen to generate it).

GUID Grid Unique IDentifier A UUID generated by the Replica Management System
for an SURL. It is created at the SURL registration time.
A GUID is immutable.

TURL Transport URL A Transport URL is returned by a SRM in response to a
request for a way to access a SURL. It includes the ac-
tual protocol you can access the SURL by. For instance,
‘gsiftp’ for GridFTP, or ‘http’ for HTTP access.

EXAMPLES

In the following we give examples for the definitions of naming conventions.

LFN examples:

lfn:mydata
lfn://any_name_you_want

SURL examples:

srm://host1.cern.ch/directory1/directory2/filename
srm://lxhare0384.cern.ch/flatfiles/cms/data/05/x.dat

GUID examples:

guid:73e16e74-26b0-11d7-b1e0-c5c68d88236a
guid:7c29f32b-4964-11d7-a86c-9ee9a33b1f19

TURL examples:

gsiftp://host1.cern.ch/directory1/directory2/filename
http://lxhare0384.cern.ch/flatfiles/cms/data/05/x.dat

IST-2000-25182 PUBLIC 66/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

6.2. ABBREVIATIONS AND EXPLANATIONS

Throughout the tutorial you will see several abbreviations that are summarised here and explained in
some details. The list is not complete includes the most important items.

CE Computing Element A Computing Element is a Grid resource where jobs can
be executed. In particular, the Computing Element can
be regarded as the gateway that then further submits to
one or more Worker Nodes in the same local area net-
work.

ERM EDG Replica Manager The client interface to all RMS operations. This consists
of a set of command-line tools.

LRC Local Replica Catalog The catalog storing GUID to SURL mappings, along
with SURL attributes for a given site, or a single Stor-
age Resource Manager at a site. It only stores GUID to
SURL mappings for SURLs that are actually located in
the given site or SRM.

RLI Replica Location Index The catalog storing information about which Local
Replica Catalogs have GUID to SURL mappings for
a particular GUID. It thus provides the link between
different LRCs, allowing for distributed indexing and
querying of the Catalogs.

RLS Replica Location Service The distributed service providing the mappings between
GUIDs and SURLs. An RLS has two components: Lo-
cal Replica Catalogs and Replica Location Indexes.

SE Storage Element A Grid Service where files can be stored and registered
with a catalog.

SRM Storage Resource Manager A Storage Resource Manager takes care of managing
storage that can either be a single disk, a disk pool
(farm), a hierarchical storage system, a tape system etc.
and provides a unique interface to it.

VO Virtual Organization Every user needs to be part of a certain community (or
organisation). Since it does not necessity need to exist,
it is called a “virtual organisation”. All people taking
part in an EDG tutorial are part of the VO “tutor”.

WMS Workload Management System Set of services that takes care of accepting user jobs,
finding a match based on the job requirements, and then
submit a job for execution to a Computing Element.

IST-2000-25182 PUBLIC 67/67

EDG TUTORIAL
Handouts for participants for EDG Release 2.x

Doc. Identifier:
DataGrid-08-TUT-V3.2

Date: November 25, 2003

ACKNOWLEDGEMENTS

We want to thank many different people belonging to various EDG work packages, who contributed with
example material, suggestions or assistance in the set up of the exercises.

This work was partially funded by the European Commission program IST-2000-25182 through the EU
DataGrid Project.

IST-2000-25182 PUBLIC 68/67

